BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 35026745)

  • 1. Monte Carlo investigation of electron fluence perturbation in MRI-guided radiotherapy beams using six commercial radiation detectors.
    Cervantes Y; Duane S; Bouchard H
    Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 35026745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams.
    Cervantes Y; Duchaine J; Billas I; Duane S; Bouchard H
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700311
    [No Abstract]   [Full Text] [Related]  

  • 3. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry.
    Benmakhlouf H; Andreo P
    Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Monte Carlo-based determination of magnetic field correction factors
    Alissa M; Zink K; Kapsch RP; Schoenfeld AA; Frick S; Czarnecki D
    Med Phys; 2023 Jul; 50(7):4578-4589. PubMed ID: 36897832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect.
    Margaroni V; Pappas EP; Episkopakis A; Pantelis E; Papagiannis P; Marinos N; Karaiskos P
    Med Phys; 2023 Feb; 50(2):1132-1148. PubMed ID: 36349535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response.
    Delfs B; Blum I; Tekin T; Schönfeld AB; Kranzer R; Poppinga D; Giesen U; Langner F; Kapsch RP; Poppe B; Looe HK
    Med Phys; 2021 Aug; 48(8):4572-4585. PubMed ID: 34032298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cema-based formalism for the determination of absorbed dose for high-energy photon beams.
    Hartmann GH; Andreo P; Kapsch RP; Zink K
    Med Phys; 2021 Nov; 48(11):7461-7475. PubMed ID: 34613620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study on the PTW 60019 microDiamond detector.
    Hartmann GH; Zink K
    Med Phys; 2019 Nov; 46(11):5159-5172. PubMed ID: 31314919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study.
    Benmakhlouf H; Sempau J; Andreo P
    Med Phys; 2014 Apr; 41(4):041711. PubMed ID: 24694131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality.
    Malkov VN; Rogers DWO
    Med Phys; 2018 Feb; 45(2):908-925. PubMed ID: 29218730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron fluence perturbation correction factors for solid state detectors irradiated in megavoltage electron beams.
    Mobit PN; Sandison GA; Nahum AE
    Phys Med Biol; 2000 Feb; 45(2):255-65. PubMed ID: 10701502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-cavity chamber dose response in megavoltage photon beams coupled to magnetic fields.
    Cervantes Y; Billas I; Shipley D; Duane S; Bouchard H
    Phys Med Biol; 2020 Dec; 65(24):245008. PubMed ID: 32674077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields.
    Reynolds M; Fallone BG; Rathee S
    Med Phys; 2014 Sep; 41(9):092103. PubMed ID: 25186403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method.
    Moignier C; Huet C; Makovicka L
    Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
    Czarnecki D; Zink K
    Phys Med Biol; 2013 Apr; 58(8):2431-44. PubMed ID: 23514734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations.
    Spindeldreier CK; Schrenk O; Bakenecker A; Kawrakow I; Burigo L; Karger CP; Greilich S; Pfaffenberger A
    Phys Med Biol; 2017 Aug; 62(16):6708-6728. PubMed ID: 28636564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow.
    Renaud J; Sarfehnia A; Bancheri J; Seuntjens J
    Med Phys; 2020 Mar; 47(3):1291-1304. PubMed ID: 31834640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields.
    Kumar S; Fenwick JD; Underwood TS; Deshpande DD; Scott AJ; Nahum AE
    Phys Med Biol; 2015 Oct; 60(20):8187-212. PubMed ID: 26439724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.