These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 35026745)
1. Monte Carlo investigation of electron fluence perturbation in MRI-guided radiotherapy beams using six commercial radiation detectors. Cervantes Y; Duane S; Bouchard H Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 35026745 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Cervantes Y; Duchaine J; Billas I; Duane S; Bouchard H Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34700311 [No Abstract] [Full Text] [Related]
3. Spectral distribution of particle fluence in small field detectors and its implication on small field dosimetry. Benmakhlouf H; Andreo P Med Phys; 2017 Feb; 44(2):713-724. PubMed ID: 28032369 [TBL] [Abstract][Full Text] [Related]
4. Experimental and Monte Carlo-based determination of magnetic field correction factors Alissa M; Zink K; Kapsch RP; Schoenfeld AA; Frick S; Czarnecki D Med Phys; 2023 Jul; 50(7):4578-4589. PubMed ID: 36897832 [TBL] [Abstract][Full Text] [Related]
5. Dosimetry in 1.5 T MR-Linacs: Monte Carlo determination of magnetic field correction factors and investigation of the air gap effect. Margaroni V; Pappas EP; Episkopakis A; Pantelis E; Papagiannis P; Marinos N; Karaiskos P Med Phys; 2023 Feb; 50(2):1132-1148. PubMed ID: 36349535 [TBL] [Abstract][Full Text] [Related]
6. The role of the construction and sensitive volume of compact ionization chambers on the magnetic field-dependent dose response. Delfs B; Blum I; Tekin T; Schönfeld AB; Kranzer R; Poppinga D; Giesen U; Langner F; Kapsch RP; Poppe B; Looe HK Med Phys; 2021 Aug; 48(8):4572-4585. PubMed ID: 34032298 [TBL] [Abstract][Full Text] [Related]
7. Cema-based formalism for the determination of absorbed dose for high-energy photon beams. Hartmann GH; Andreo P; Kapsch RP; Zink K Med Phys; 2021 Nov; 48(11):7461-7475. PubMed ID: 34613620 [TBL] [Abstract][Full Text] [Related]
8. A Monte Carlo study on the PTW 60019 microDiamond detector. Hartmann GH; Zink K Med Phys; 2019 Nov; 46(11):5159-5172. PubMed ID: 31314919 [TBL] [Abstract][Full Text] [Related]
9. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study. Benmakhlouf H; Sempau J; Andreo P Med Phys; 2014 Apr; 41(4):041711. PubMed ID: 24694131 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality. Malkov VN; Rogers DWO Med Phys; 2018 Feb; 45(2):908-925. PubMed ID: 29218730 [TBL] [Abstract][Full Text] [Related]
11. Electron fluence perturbation correction factors for solid state detectors irradiated in megavoltage electron beams. Mobit PN; Sandison GA; Nahum AE Phys Med Biol; 2000 Feb; 45(2):255-65. PubMed ID: 10701502 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams. Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621 [TBL] [Abstract][Full Text] [Related]
13. Small-cavity chamber dose response in megavoltage photon beams coupled to magnetic fields. Cervantes Y; Billas I; Shipley D; Duane S; Bouchard H Phys Med Biol; 2020 Dec; 65(24):245008. PubMed ID: 32674077 [TBL] [Abstract][Full Text] [Related]
14. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods. Ding GX; Duggan DM; Coffey CW Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869 [TBL] [Abstract][Full Text] [Related]
15. Dose response of selected solid state detectors in applied homogeneous transverse and longitudinal magnetic fields. Reynolds M; Fallone BG; Rathee S Med Phys; 2014 Sep; 41(9):092103. PubMed ID: 25186403 [TBL] [Abstract][Full Text] [Related]
16. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method. Moignier C; Huet C; Makovicka L Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields. Czarnecki D; Zink K Phys Med Biol; 2013 Apr; 58(8):2431-44. PubMed ID: 23514734 [TBL] [Abstract][Full Text] [Related]
18. Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations. Spindeldreier CK; Schrenk O; Bakenecker A; Kawrakow I; Burigo L; Karger CP; Greilich S; Pfaffenberger A Phys Med Biol; 2017 Aug; 62(16):6708-6728. PubMed ID: 28636564 [TBL] [Abstract][Full Text] [Related]
19. Absolute dosimetry of a 1.5 T MR-guided accelerator-based high-energy photon beam in water and solid phantoms using Aerrow. Renaud J; Sarfehnia A; Bancheri J; Seuntjens J Med Phys; 2020 Mar; 47(3):1291-1304. PubMed ID: 31834640 [TBL] [Abstract][Full Text] [Related]
20. Breakdown of Bragg-Gray behaviour for low-density detectors under electronic disequilibrium conditions in small megavoltage photon fields. Kumar S; Fenwick JD; Underwood TS; Deshpande DD; Scott AJ; Nahum AE Phys Med Biol; 2015 Oct; 60(20):8187-212. PubMed ID: 26439724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]