These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 35026838)

  • 1. Inhibiting mitochondrial fission rescues degeneration in hereditary spastic paraplegia neurons.
    Chen Z; Chai E; Mou Y; Roda RH; Blackstone C; Li XJ
    Brain; 2022 Nov; 145(11):4016-4031. PubMed ID: 35026838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaired mitochondrial dynamics underlie axonal defects in hereditary spastic paraplegias.
    Denton K; Mou Y; Xu CC; Shah D; Chang J; Blackstone C; Li XJ
    Hum Mol Genet; 2018 Jul; 27(14):2517-2530. PubMed ID: 29726929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48.
    Pensato V; Castellotti B; Gellera C; Pareyson D; Ciano C; Nanetti L; Salsano E; Piscosquito G; Sarto E; Eoli M; Moroni I; Soliveri P; Lamperti E; Chiapparini L; Di Bella D; Taroni F; Mariotti C
    Brain; 2014 Jul; 137(Pt 7):1907-20. PubMed ID: 24833714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking.
    Chai E; Chen Z; Mou Y; Thakur G; Zhan W; Li XJ
    Neurobiol Dis; 2023 Oct; 187():106293. PubMed ID: 37709208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia.
    Pérez-Brangulí F; Mishra HK; Prots I; Havlicek S; Kohl Z; Saul D; Rummel C; Dorca-Arevalo J; Regensburger M; Graef D; Sock E; Blasi J; Groemer TW; Schlötzer-Schrehardt U; Winkler J; Winner B
    Hum Mol Genet; 2014 Sep; 23(18):4859-74. PubMed ID: 24794856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZFYVE26/SPASTIZIN and SPG11/SPATACSIN mutations in hereditary spastic paraplegia types AR-SPG15 and AR-SPG11 have different effects on autophagy and endocytosis.
    Vantaggiato C; Panzeri E; Castelli M; Citterio A; Arnoldi A; Santorelli FM; Liguori R; Scarlato M; Musumeci O; Toscano A; Clementi E; Bassi MT
    Autophagy; 2019 Jan; 15(1):34-57. PubMed ID: 30081747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients.
    Mou Y; Nandi G; Mukte S; Chai E; Chen Z; Nielsen JE; Nielsen TT; Criscuolo C; Blackstone C; Fraidakis MJ; Li XJ
    Orphanet J Rare Dis; 2023 Apr; 18(1):72. PubMed ID: 37024986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A case of spastic paraplegia 48 with a novel mutation in the AP5Z1 gene].
    Maruta K; Ando M; Otomo T; Takashima H
    Rinsho Shinkeigaku; 2020 Aug; 60(8):543-548. PubMed ID: 32641631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue axonal defects by targeting mitochondrial dynamics in hereditary spastic paraplegias.
    Mou Y; Li XJ
    Neural Regen Res; 2019 Apr; 14(4):574-577. PubMed ID: 30632492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia.
    Denton KR; Lei L; Grenier J; Rodionov V; Blackstone C; Li XJ
    Stem Cells; 2014 Feb; 32(2):414-23. PubMed ID: 24123785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and phenotypic characterization of complex hereditary spastic paraplegia.
    Kara E; Tucci A; Manzoni C; Lynch DS; Elpidorou M; Bettencourt C; Chelban V; Manole A; Hamed SA; Haridy NA; Federoff M; Preza E; Hughes D; Pittman A; Jaunmuktane Z; Brandner S; Xiromerisiou G; Wiethoff S; Schottlaender L; Proukakis C; Morris H; Warner T; Bhatia KP; Korlipara LV; Singleton AB; Hardy J; Wood NW; Lewis PA; Houlden H
    Brain; 2016 Jul; 139(Pt 7):1904-18. PubMed ID: 27217339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse models for hereditary spastic paraplegia uncover a role of PI4K2A in autophagic lysosome reformation.
    Khundadze M; Ribaudo F; Hussain A; Stahlberg H; Brocke-Ahmadinejad N; Franzka P; Varga RE; Zarkovic M; Pungsrinont T; Kokal M; Ganley IG; Beetz C; Sylvester M; Hübner CA
    Autophagy; 2021 Nov; 17(11):3690-3706. PubMed ID: 33618608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11.
    Varga RE; Khundadze M; Damme M; Nietzsche S; Hoffmann B; Stauber T; Koch N; Hennings JC; Franzka P; Huebner AK; Kessels MM; Biskup C; Jentsch TJ; Qualmann B; Braulke T; Kurth I; Beetz C; Hübner CA
    PLoS Genet; 2015 Aug; 11(8):e1005454. PubMed ID: 26284655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia.
    Mou Y; Dong Y; Chen Z; Denton KR; Duff MO; Blackstone C; Zhang SC; Li XJ
    Acta Neuropathol Commun; 2020 Dec; 8(1):214. PubMed ID: 33287888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency and phenotype of SPG11 and SPG15 in complicated hereditary spastic paraplegia.
    Schüle R; Schlipf N; Synofzik M; Klebe S; Klimpe S; Hehr U; Winner B; Lindig T; Dotzer A; Riess O; Winkler J; Schöls L; Bauer P
    J Neurol Neurosurg Psychiatry; 2009 Dec; 80(12):1402-4. PubMed ID: 19917823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Axonal Degeneration in Human Pluripotent Stem Cell Models of Hereditary Spastic Paraplegias.
    Li XJ; Mou Y; Milton C; Chen Z
    Methods Mol Biol; 2022; 2549():69-83. PubMed ID: 33772460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five.
    Khundadze M; Ribaudo F; Hussain A; Rosentreter J; Nietzsche S; Thelen M; Winter D; Hoffmann B; Afzal MA; Hermann T; de Heus C; Piskor EM; Kosan C; Franzka P; von Kleist L; Stauber T; Klumperman J; Damme M; Proikas-Cezanne T; Hübner CA
    Neurobiol Dis; 2019 Jul; 127():419-431. PubMed ID: 30930081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia.
    Hehr U; Bauer P; Winner B; Schule R; Olmez A; Koehler W; Uyanik G; Engel A; Lenz D; Seibel A; Hehr A; Ploetz S; Gamez J; Rolfs A; Weis J; Ringer TM; Bonin M; Schuierer G; Marienhagen J; Bogdahn U; Weber BH; Topaloglu H; Schols L; Riess O; Winkler J
    Ann Neurol; 2007 Dec; 62(6):656-65. PubMed ID: 18067136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.
    Montecchiani C; Pedace L; Lo Giudice T; Casella A; Mearini M; Gaudiello F; Pedroso JL; Terracciano C; Caltagirone C; Massa R; St George-Hyslop PH; Barsottini OG; Kawarai T; Orlacchio A
    Brain; 2016 Jan; 139(Pt 1):73-85. PubMed ID: 26556829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon-Specific Mitochondrial Pathology in SPG11 Alpha Motor Neurons.
    Güner F; Pozner T; Krach F; Prots I; Loskarn S; Schlötzer-Schrehardt U; Winkler J; Winner B; Regensburger M
    Front Neurosci; 2021; 15():680572. PubMed ID: 34326717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.