These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35027060)

  • 1. Automatic freezing-tolerant rapeseed material recognition using UAV images and deep learning.
    Li L; Qiao J; Yao J; Li J; Li L
    Plant Methods; 2022 Jan; 18(1):5. PubMed ID: 35027060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Deep-Learning-Based Approach for Wheat Yellow Rust Disease Recognition from Unmanned Aerial Vehicle Images.
    Pan Q; Gao M; Wu P; Yan J; Li S
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach.
    Gao P; Zhang Y; Zhang L; Noguchi R; Ahamed T
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Effective Image Denoising Method for UAV Images via Improved Generative Adversarial Networks.
    Wang R; Xiao X; Guo B; Qin Q; Chen R
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29933601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the performance evaluation of object classification models in low altitude aerial data.
    Mittal P; Sharma A; Singh R; Sangaiah AK
    J Supercomput; 2022; 78(12):14548-14570. PubMed ID: 35399758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic recognition of bladder tumours using deep learning technology and its clinical application.
    Yang R; Du Y; Weng X; Chen Z; Wang S; Liu X
    Int J Med Robot; 2021 Apr; 17(2):e2194. PubMed ID: 33119212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches for Rice Seedling Growth Stages Detection.
    Tan S; Liu J; Lu H; Lan M; Yu J; Liao G; Wang Y; Li Z; Qi L; Ma X
    Front Plant Sci; 2022; 13():914771. PubMed ID: 35755682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks.
    Zhang J; Zhao B; Yang C; Shi Y; Liao Q; Zhou G; Wang C; Xie T; Jiang Z; Zhang D; Yang W; Huang C; Xie J
    Front Plant Sci; 2020; 11():617. PubMed ID: 32587594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vehicle Detection From UAV Imagery With Deep Learning: A Review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6047-6067. PubMed ID: 34029200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic grading evaluation of winter wheat lodging based on deep learning.
    Zang H; Su X; Wang Y; Li G; Zhang J; Zheng G; Hu W; Shen H
    Front Plant Sci; 2024; 15():1284861. PubMed ID: 38726297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agricultural plant cataloging and establishment of a data framework from UAV-based crop images by computer vision.
    Günder M; Ispizua Yamati FR; Kierdorf J; Roscher R; Mahlein AK; Bauckhage C
    Gigascience; 2022 Jun; 11():. PubMed ID: 35715875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions.
    Gao H; Yu Y; Huang X; Song L; Li L; Li L; Zhang L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of honeycomb lung in CT images based on improved MobileNet model.
    Gang L; Haixuan Z; Linning E; Ling Z; Yu L; Juming Z
    Med Phys; 2021 Aug; 48(8):4304-4315. PubMed ID: 33826769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning techniques to classify agricultural crops through UAV imagery: a review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    Neural Comput Appl; 2022; 34(12):9511-9536. PubMed ID: 35281624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ramie Yield Estimation Based on UAV RGB Images.
    Fu H; Wang C; Cui G; She W; Zhao L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform.
    Zhou C; Ye H; Hu J; Shi X; Hua S; Yue J; Xu Z; Yang G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.