These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 3502709)

  • 1. Nucleotide sequence of the methyl coenzyme M reductase gene cluster from Methanosarcina barkeri.
    Bokranz M; Klein A
    Nucleic Acids Res; 1987 May; 15(10):4350-1. PubMed ID: 3502709
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of the methyl reductase genes and gene products.
    Weil CF; Sherf BA; Reeve JN
    Can J Microbiol; 1989 Jan; 35(1):101-8. PubMed ID: 2720489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria.
    Klein A; Allmansberger R; Bokranz M; Knaub S; Müller B; Muth E
    Mol Gen Genet; 1988 Aug; 213(2-3):409-20. PubMed ID: 3185509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and comparative analysis of the genes encoding component C of methyl coenzyme M reductase in the extremely thermophilic archaebacterium Methanothermus fervidus.
    Weil CF; Cram DS; Sherf BA; Reeve JN
    J Bacteriol; 1988 Oct; 170(10):4718-26. PubMed ID: 3170483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.
    Bokranz M; Bäumner G; Allmansberger R; Ankel-Fuchs D; Klein A
    J Bacteriol; 1988 Feb; 170(2):568-77. PubMed ID: 2448287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the mcrD gene product and its association with component C of methyl coenzyme M reductase in Methanococcus vannielii.
    Sherf BA; Reeve JN
    J Bacteriol; 1990 Apr; 172(4):1828-33. PubMed ID: 2180905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular, genetic, and biochemical characterization of the serC gene of Methanosarcina barkeri Fusaro.
    Metcalf WW; Zhang JK; Shi X; Wolfe RS
    J Bacteriol; 1996 Oct; 178(19):5797-802. PubMed ID: 8824630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation.
    Grabarse W; Mahlert F; Shima S; Thauer RK; Ermler U
    J Mol Biol; 2000 Oct; 303(2):329-44. PubMed ID: 11023796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence of nifH regions from Methanobacterium ivanovii and Methanosarcina barkeri 227 and characterization of glnB-like genes.
    Sibold L; Henriquet M; Possot O; Aubert JP
    Res Microbiol; 1991 Jan; 142(1):5-12. PubMed ID: 2068380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes.
    Maeder DL; Anderson I; Brettin TS; Bruce DC; Gilna P; Han CS; Lapidus A; Metcalf WW; Saunders E; Tapia R; Sowers KR
    J Bacteriol; 2006 Nov; 188(22):7922-31. PubMed ID: 16980466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus.
    Ohkuma M; Noda S; Horikoshi K; Kudo T
    FEMS Microbiol Lett; 1995 Dec; 134(1):45-50. PubMed ID: 8593954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analysis of methyl coenzyme-M reductase detected from the bovine rumen.
    Tatsuoka N; Mohammed N; Mitsumori M; Hara K; Kurihara M; Itabashi H
    Lett Appl Microbiol; 2004; 39(3):257-60. PubMed ID: 15287871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved elements in the transcription initiation regions preceding highly expressed structural genes of methanogenic archaebacteria.
    Allmansberger R; Knaub S; Klein A
    Nucleic Acids Res; 1988 Aug; 16(15):7419-36. PubMed ID: 3412892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons.
    Nölling J; Elfner A; Palmer JR; Steigerwald VJ; Pihl TD; Lake JA; Reeve JN
    Int J Syst Bacteriol; 1996 Oct; 46(4):1170-3. PubMed ID: 8863453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster.
    Hedderich R; Hamann N; Bennati M
    Biol Chem; 2005 Oct; 386(10):961-70. PubMed ID: 16218868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).
    Lin Q; Fang X; Ho A; Li J; Yan X; Tu B; Li C; Li J; Yao M; Li X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7303-7316. PubMed ID: 28828628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.
    Wagner T; Kahnt J; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.
    Evans PN; Parks DH; Chadwick GL; Robbins SJ; Orphan VJ; Golding SD; Tyson GW
    Science; 2015 Oct; 350(6259):434-8. PubMed ID: 26494757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of nucleotide sequences of nifH genes in methanotrophic bacteria].
    Bulygina ES; Kuznetsov BB; Marusina AI; Turova TP; Kravchenko IK; Bykova SA; Kolganova TV; Gal'chenko VF
    Mikrobiologiia; 2002; 71(4):500-8. PubMed ID: 12244720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of artificial DNA with multiple probe sites as reference DNA templates for quantitative real-time PCR to examine methanogen communities.
    Kim TG; Yi T; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(4):417-21. PubMed ID: 23379946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.