These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35027090)

  • 41. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants.
    Ashassi-Sorkhabi H; Moradi-Haghighi M; Zarrini G; Javaherdashti R
    Biodegradation; 2012 Feb; 23(1):69-79. PubMed ID: 21695454
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Early corrosion behavior of X80 pipeline steel in a simulated soil solution containing Desulfovibrio desulfuricans.
    Fan Y; Chen C; Zhang Y; Liu H; Liu H; Liu H
    Bioelectrochemistry; 2021 Oct; 141():107880. PubMed ID: 34229181
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sulfate-reducing bacteria lower sulfur-mediated pitting corrosion under conditions of oxygen ingress.
    Johnston SL; Voordouw G
    Environ Sci Technol; 2012 Aug; 46(16):9183-90. PubMed ID: 22823179
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor.
    Parthipan P; Cheng L; Dhandapani P; Rajasekar A
    Sci Total Environ; 2023 Jan; 856(Pt 2):159203. PubMed ID: 36202367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbiologically Influenced Corrosion of Q235 Carbon Steel by
    Qi H; Wang Y; Feng J; Peng R; Shi Q; Xie X
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36430135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater.
    Rajala P; Bomberg M; Vepsäläinen M; Carpén L
    Biofouling; 2017 Feb; 33(2):195-209. PubMed ID: 28198664
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses of soil microbiome to steel corrosion.
    Huang Y; Xu D; Huang LY; Lou YT; Muhadesi JB; Qian HC; Zhou EZ; Wang BJ; Li XT; Jiang Z; Liu SJ; Zhang DW; Jiang CY
    NPJ Biofilms Microbiomes; 2021 Jan; 7(1):6. PubMed ID: 33479252
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial acidification by N, S, Fe and Mn oxidation as a key mechanism for deterioration of subsea tunnel sprayed concrete.
    Karačić S; Suarez C; Hagelia P; Persson F; Modin O; Martins PD; Wilén BM
    Sci Rep; 2024 Sep; 14(1):22742. PubMed ID: 39349736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of Homogeneously-Sized Carbon Steel Ball Bearings to Study Microbially-Influenced Corrosion in Oil Field Samples.
    Voordouw G; Menon P; Pinnock T; Sharma M; Shen Y; Venturelli A; Voordouw J; Sexton A
    Front Microbiol; 2016; 7():351. PubMed ID: 27047467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21.
    Xu L; Guan F; Ma Y; Zhang R; Zhang Y; Zhai X; Dong X; Wang Y; Duan J; Hou B
    Bioelectrochemistry; 2022 Jun; 145():108048. PubMed ID: 35093618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crevice corrosion of X80 carbon steel induced by sulfate reducing bacteria in simulated seawater.
    Zhang T; Wang J; Li G; Liu H
    Bioelectrochemistry; 2021 Dec; 142():107933. PubMed ID: 34560601
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High Taxonomic Diversity in Ship Bilges Presents Challenges for Monitoring Microbial Corrosion and Opportunity To Utilize Community Functional Profiling.
    Wood JL; Neil WC; Wade SA
    Appl Environ Microbiol; 2021 Aug; 87(18):e0089021. PubMed ID: 34232755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dual role of microbes in corrosion.
    Kip N; van Veen JA
    ISME J; 2015 Mar; 9(3):542-51. PubMed ID: 25259571
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomineralization To Prevent Microbially Induced Corrosion on Concrete for Sustainable Marine Infrastructure.
    Sun X; Wai OWH; Xie J; Li X
    Environ Sci Technol; 2024 Jan; 58(1):522-533. PubMed ID: 38052449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Corrosion behavior and mechanism of carbon steel influenced by interior deposit microflora of an in-service pipeline.
    Su H; Tang R; Peng X; Gao A; Han Y
    Bioelectrochemistry; 2020 Apr; 132():107406. PubMed ID: 31812086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN
    Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diverse bacterial groups are associated with corrosive lesions at a Granite Mountain Record Vault (GMRV).
    Kan J; Chellamuthu P; Obraztsova A; Moore JE; Nealson KH
    J Appl Microbiol; 2011 Aug; 111(2):329-37. PubMed ID: 21599813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria.
    Chan KY; Xu LC; Fang HH
    Environ Sci Technol; 2002 Apr; 36(8):1720-7. PubMed ID: 11993869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.
    Gomez-Smith CK; LaPara TM; Hozalski RM
    Environ Sci Technol; 2015 Jul; 49(14):8432-40. PubMed ID: 26098899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.