BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 35027120)

  • 1. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color.
    Yao K; Meng Q; Bulone V; Zhou Q
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28558169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels.
    Zhou C; Wu Q; Yue Y; Zhang Q
    J Colloid Interface Sci; 2011 Jan; 353(1):116-23. PubMed ID: 20932533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications.
    Ganguly K; Patel DK; Dutta SD; Shin WC; Lim KT
    Int J Biol Macromol; 2020 Jul; 155():456-469. PubMed ID: 32222290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Nanocrystal-Based Gradient Hydrogel Actuators with Controllable Bending Properties.
    Roopsung N; Sugawara A; Hsu YI; Asoh TA; Uyama H
    Macromol Rapid Commun; 2023 Sep; 44(18):e2300205. PubMed ID: 37335985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility.
    Du W; Deng A; Guo J; Chen J; Li H; Gao Y
    Carbohydr Polym; 2019 Nov; 223():115084. PubMed ID: 31426961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of chiral nematic mesoporous materials.
    Kelly JA; Giese M; Shopsowitz KE; Hamad WY; MacLachlan MJ
    Acc Chem Res; 2014 Apr; 47(4):1088-96. PubMed ID: 24694253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Color Controllable Humidity Response Chiral Nematic Cellulose Nanocrystalline Film.
    Duan R; Lu M; Tang R; Guo Y; Zhao D
    Biosensors (Basel); 2022 Sep; 12(9):. PubMed ID: 36140092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Behavior, Self-Assembly, and Adhesive Potential of Cellulose Nanocrystal-Bovine Serum Albumin Amyloid Composites.
    De France KJ; Kummer N; Campioni S; Nyström G
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1958-1968. PubMed ID: 36576901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction.
    Schütz C; Agthe M; Fall AB; Gordeyeva K; Guccini V; Salajková M; Plivelic TS; Lagerwall JP; Salazar-Alvarez G; Bergström L
    Langmuir; 2015 Jun; 31(23):6507-13. PubMed ID: 26020691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coassembly of Cellulose Nanocrystals and Neutral Polymers in Iridescent Chiral Nematic Films.
    Andrew LJ; Walters CM; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2023 Feb; 24(2):896-908. PubMed ID: 36720197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation.
    Abitbol T; Mijlkovic A; Malafronte L; Stevanic JS; Larsson PT; Lopez-Sanchez P
    Carbohydr Polym; 2021 May; 260():117345. PubMed ID: 33712116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors.
    Xiao G; Wang Y; Zhang H; Zhu Z; Fu S
    Int J Biol Macromol; 2021 Feb; 170():272-283. PubMed ID: 33359808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding.
    Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L
    Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals-based bio-composite optical materials for reversible colorimetric responsive films and coatings.
    An B; Xu M; Sun J; Sun W; Miao Y; Ma C; Luo S; Li J; Li W; Liu S
    Int J Biol Macromol; 2023 Apr; 233():123600. PubMed ID: 36773875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanocrystals reinforced highly stretchable thermal-sensitive hydrogel with ultra-high drug loading.
    Chen T; Yang Y; Peng H; Whittaker AK; Li Y; Zhao Q; Wang Y; Zhu S; Wang Z
    Carbohydr Polym; 2021 Aug; 266():118122. PubMed ID: 34044938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat.
    Li Q; He C; Wang C; Huang Y; Yu J; Wang C; Li W; Zhang X; Zhang F; Qing G
    Small; 2023 Jul; 19(29):e2207932. PubMed ID: 37052499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.