BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35027131)

  • 1. pH-regulated interaction modes between cyanidin-3-glucoside and phenylboronic acid-modified alginate.
    Cruz L; Mateus N; de Freitas V
    Carbohydr Polym; 2022 Mar; 280():119029. PubMed ID: 35027131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.
    Limón PM; Gavara R; Pina F
    J Agric Food Chem; 2013 Jun; 61(22):5245-51. PubMed ID: 23697334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of self-aggregation on the determination of the kinetic and thermodynamic constants of the network of chemical reactions in 3-glucoside anthocyanins.
    Leydet Y; Gavara R; Petrov V; Diniz AM; Jorge Parola A; Lima JC; Pina F
    Phytochemistry; 2012 Nov; 83():125-35. PubMed ID: 22906883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of a Water-Soluble Gallic Acid-Based Dendrimer on the Color-Stabilizing Mechanisms of Anthocyanins.
    Cruz L; Basílio N; Mendoza J; Mateus N; de Freitas V; Tawara MH; Correa J; Fernandez-Megia E
    Chemistry; 2019 Sep; 25(50):11696-11706. PubMed ID: 31264754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Color properties of four cyanidin-pyruvic acid adducts.
    Oliveira J; Fernandes V; Miranda C; Santos-Buelga C; Silva A; de Freitas V; Mateus N
    J Agric Food Chem; 2006 Sep; 54(18):6894-903. PubMed ID: 16939355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies used by nature to fix the red, purple and blue colours in plants: a physical chemistry approach.
    Basílio N; Mendoza J; Seco A; Oliveira J; de Freitas V; Pina F
    Phys Chem Chem Phys; 2021 Nov; 23(42):24080-24101. PubMed ID: 34694309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Temperature on Acidity and Hydration Equilibrium Constants of Delphinidin-3-O- and Cyanidin-3-O-sambubioside Calculated from Uni- and Multiwavelength Spectroscopic Data.
    Vidot K; Achir N; Mertz C; Sinela A; Rawat N; Prades A; Dangles O; Fulcrand H; Dornier M
    J Agric Food Chem; 2016 May; 64(20):4139-45. PubMed ID: 27124576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model.
    Luna-Vital D; Cortez R; Ongkowijoyo P; Gonzalez de Mejia E
    Food Res Int; 2018 Mar; 105():169-177. PubMed ID: 29433204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the molecular mechanism of anthocyanin binding to pectin.
    Fernandes A; Brás NF; Mateus N; de Freitas V
    Langmuir; 2014 Jul; 30(28):8516-27. PubMed ID: 24991843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of kinetic and thermodynamic parameters of cyanidin-3-glucoside methyl and glucuronyl metabolite conjugates.
    Cruz L; Basílio N; Mateus N; Pina F; de Freitas V
    J Phys Chem B; 2015 Feb; 119(5):2010-8. PubMed ID: 25622073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular Copigmentation Between Delphinidin 3-
    Seco A; Basílio N; Brás NF; Yoshida K; Kondo T; Oyama KI; Pina F
    J Agric Food Chem; 2022 Sep; 70(36):11391-11400. PubMed ID: 36040134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Insight into the Degradation of Anthocyanins: Reversible versus the Irreversible Chemical Processes.
    Sousa D; Basílio N; Oliveira J; de Freitas V; Pina F
    J Agric Food Chem; 2022 Jan; 70(2):656-668. PubMed ID: 34982560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution.
    Fenger JA; Moloney M; Robbins RJ; Collins TM; Dangles O
    Food Funct; 2019 Oct; 10(10):6740-6751. PubMed ID: 31576890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Lignosulfonates on the Thermodynamic and Kinetic Parameters of Malvidin-3- O-glucoside in Aqueous Solutions.
    Araújo P; Basílio N; Fernandes A; Mateus N; de Freitas V; Pina F; Oliveira J
    J Agric Food Chem; 2018 Jun; 66(25):6382-6387. PubMed ID: 29870233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mimicking Positive and Negative Copigmentation Effects in Anthocyanin Analogues by Host-Guest Interaction with Cucurbit[7]uril and β-Cyclodextrins.
    Basílio N; Cabrita L; Pina F
    J Agric Food Chem; 2015 Sep; 63(35):7624-9. PubMed ID: 25891490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grape anthocyanin oligomerization: a putative mechanism for red color stabilization?
    Oliveira J; Brás NF; da Silva MA; Mateus N; Parola AJ; de Freitas V
    Phytochemistry; 2014 Sep; 105():178-85. PubMed ID: 24890388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, isolation, structure elucidation, and color properties of 10-acetyl-pyranoanthocyanins.
    Gómez-Alonso S; Blanco-Vega D; Gómez MV; Hermosín-Gutiérrez I
    J Agric Food Chem; 2012 Dec; 60(49):12210-23. PubMed ID: 23167949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 1. Structural aspects.
    Yanamala N; Tirupula KC; Balem F; Klein-Seetharaman J
    Photochem Photobiol; 2009; 85(2):454-62. PubMed ID: 19192199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides.
    Tachibana N; Kimura Y; Ohno T
    Food Chem; 2014 Jan; 143():452-8. PubMed ID: 24054266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Limits of Anthocyanins Co-Pigmentation Models and Respective Equations.
    Oliveira J; Azevedo J; Teixeira N; Araújo P; de Freitas V; Basílio N; Pina F
    J Agric Food Chem; 2021 Feb; 69(4):1359-1367. PubMed ID: 33470110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.