BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35027197)

  • 1. Morphological analysis of erythrocytes of an Antarctic teleost under heat stress: Bias of the stabling effect.
    Rizzotti D; Manfrin C; Gerdol M; Greco S; Santovito G; Giulianini PG
    J Therm Biol; 2022 Jan; 103():103139. PubMed ID: 35027197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii.
    Truzzi C; Illuminati S; Antonucci M; Scarponi G; Annibaldi A
    Mar Environ Res; 2018 Aug; 139():122-128. PubMed ID: 29776593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae).
    Hofmann GE; Buckley BA; Airaksinen S; Keen JE; Somero GN
    J Exp Biol; 2000 Aug; 203(Pt 15):2331-9. PubMed ID: 10887071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morpho-functional effects of heat stress on the gills of Antarctic T. bernacchii and C. hamatus.
    Garofalo F; Santovito G; Amelio D
    Mar Pollut Bull; 2019 Apr; 141():194-204. PubMed ID: 30955726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.
    Sleadd IM; Lee M; Hassumani DO; Stecyk TM; Zeitz OK; Buckley BA
    J Therm Biol; 2014 Aug; 44():119-25. PubMed ID: 25086982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii.
    Sandersfeld T; Davison W; Lamare MD; Knust R; Richter C
    J Exp Biol; 2015 Aug; 218(Pt 15):2373-81. PubMed ID: 26056241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.
    Huth TJ; Place SP
    BMC Genomics; 2013 Nov; 14():805. PubMed ID: 24252228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. F-type lectin from serum of the Antarctic teleost fish Trematomus bernacchii (Boulenger, 1902): Purification, structural characterization, and bacterial agglutinating activity.
    Dara M; Giulianini PG; Manfrin C; Parisi MG; Parrinello D; La Corte C; Vasta GR; Cammarata M
    Comp Biochem Physiol B Biochem Mol Biol; 2021; 256():110633. PubMed ID: 34126205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors.
    Huth TJ; Place SP
    BMC Genomics; 2016 Feb; 17():127. PubMed ID: 26897172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish.
    Wilson RS; Franklin CE; Davison W; Kraft P
    J Comp Physiol B; 2001 May; 171(4):263-9. PubMed ID: 11409623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of thermal acclimation and acute temperature change on the motility of epithelial wound-healing cells (keratocytes) of tropical, temperate and Antarctic fish.
    Ream RA; Theriot JA; Somero GN
    J Exp Biol; 2003 Dec; 206(Pt 24):4539-51. PubMed ID: 14610038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki.
    Franklin CE; Davison W; Seebacher F
    J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of gradual temperature increase on the carbohydrate energy metabolism responses of the Antarctic fish Notothenia rossii.
    Guillen AC; Borges ME; Herrerias T; Kandalski PK; de Arruda Marins E; Viana D; de Souza MRDP; Oliveira do Carmo Daloski L; Donatti L
    Mar Environ Res; 2019 Sep; 150():104779. PubMed ID: 31450038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of heat stress on the antioxidant defense system and erythrocyte morphology of Antarctic fishes.
    Souza MRDP; Zaleski T; Machado C; Kandalski PK; Forgati M; D' Bastiani E; Piechnik CA; Donatti L
    An Acad Bras Cienc; 2021; 94(suppl 1):e20190657. PubMed ID: 34730667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytology of lymphomyeloid head kidney of Antarctic fishes Trematomus bernacchii (Nototheniidae) and Chionodraco hamatus (Channicthyidae).
    Romano N; Ceccariglia S; Mastrolia L; Mazzini M
    Tissue Cell; 2002 Apr; 34(2):63-72. PubMed ID: 12165240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish Harpagifer antarcticus.
    Vargas-Chacoff L; Muñoz JLP; Ocampo D; Paschke K; Navarro JM
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():131-137. PubMed ID: 31170463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.