These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 35027199)
1. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming. Delgado-Suazo P; Burrowes PA J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199 [TBL] [Abstract][Full Text] [Related]
2. Thermal physiological traits in tropical lowland amphibians: Vulnerability to climate warming and cooling. von May R; Catenazzi A; Santa-Cruz R; Gutierrez AS; Moritz C; Rabosky DL PLoS One; 2019; 14(8):e0219759. PubMed ID: 31369565 [TBL] [Abstract][Full Text] [Related]
3. Hydrothermal physiology and climate vulnerability in amphibians. Greenberg DA; Palen WJ Proc Biol Sci; 2021 Feb; 288(1945):20202273. PubMed ID: 33593188 [TBL] [Abstract][Full Text] [Related]
4. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation. Páez-Vacas MI; Funk WC J Therm Biol; 2024 Feb; 120():103815. PubMed ID: 38402728 [TBL] [Abstract][Full Text] [Related]
5. Predators like it hot: Thermal mismatch in a predator-prey system across an elevational tropical gradient. Pintanel P; Tejedo M; Salinas-Ivanenko S; Jervis P; Merino-Viteri A J Anim Ecol; 2021 Aug; 90(8):1985-1995. PubMed ID: 33942306 [TBL] [Abstract][Full Text] [Related]
6. Tropical amphibians in shifting thermal landscapes under land-use and climate change. Nowakowski AJ; Watling JI; Whitfield SM; Todd BD; Kurz DJ; Donnelly MA Conserv Biol; 2017 Feb; 31(1):96-105. PubMed ID: 27254115 [TBL] [Abstract][Full Text] [Related]
7. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina. Kubisch EL; Fernández JB; Ibargüengoytía NR J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700 [TBL] [Abstract][Full Text] [Related]
8. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
9. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus. Caldwell AJ; While GM; Beeton NJ; Wapstra E J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494 [TBL] [Abstract][Full Text] [Related]
10. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity. Pincebourde S; Suppo C Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561 [TBL] [Abstract][Full Text] [Related]
11. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091 [TBL] [Abstract][Full Text] [Related]
12. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes. Nati JJH; Svendsen MBS; Marras S; Killen SS; Steffensen JF; McKenzie DJ; Domenici P Sci Rep; 2021 Oct; 11(1):21272. PubMed ID: 34711864 [TBL] [Abstract][Full Text] [Related]
13. Low temperatures impact species distributions of jumping spiders across a desert elevational cline. Brandt EE; Roberts KT; Williams CM; Elias DO J Insect Physiol; 2020 Apr; 122():104037. PubMed ID: 32087221 [TBL] [Abstract][Full Text] [Related]
14. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard. Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991 [TBL] [Abstract][Full Text] [Related]
15. Temperature-dependent dispersal and ectotherm species' distributions in a warming world. Amarasekare P J Anim Ecol; 2024 Apr; 93(4):428-446. PubMed ID: 38406823 [TBL] [Abstract][Full Text] [Related]
16. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Leahy L; Scheffers BR; Williams SE; Andersen AN Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920 [TBL] [Abstract][Full Text] [Related]
17. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change. González-Del-Pliego P; Scheffers BR; Freckleton RP; Basham EW; Araújo MB; Acosta-Galvis AR; Medina Uribe CA; Haugaasen T; Edwards DP J Anim Ecol; 2020 Nov; 89(11):2451-2460. PubMed ID: 32745275 [TBL] [Abstract][Full Text] [Related]
18. Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. Meza-Parral Y; García-Robledo C; Pineda E; Escobar F; Donnelly MA J Therm Biol; 2020 Apr; 89():102565. PubMed ID: 32364996 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J; Kearney MR; Hoffmann AA Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [TBL] [Abstract][Full Text] [Related]
20. Phenology and plasticity can prevent adaptive clines in thermal tolerance across temperate mountains: The importance of the elevation-time axis. Gutiérrez-Pesquera LM; Tejedo M; Camacho A; Enriquez-Urzelai U; Katzenberger M; Choda M; Pintanel P; Nicieza AG Ecol Evol; 2022 Oct; 12(10):e9349. PubMed ID: 36225839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]