These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 350277)
41. The pentose phosphate pathway in Trypanosoma cruzi. Maugeri DA; Cazzulo JJ FEMS Microbiol Lett; 2004 May; 234(1):117-23. PubMed ID: 15109729 [TBL] [Abstract][Full Text] [Related]
42. Cyanide-sensitive and insensitive respiration of Trypanosoma cruzi. Felix CR; de Araújo Caldas R; Ceron CR; Roitman I Ann Trop Med Parasitol; 1978 Feb; 72(1):89-91. PubMed ID: 350173 [No Abstract] [Full Text] [Related]
43. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Shah-Simpson S; Pereira CF; Dumoulin PC; Caradonna KL; Burleigh BA Mol Biochem Parasitol; 2016 Aug; 208(2):91-5. PubMed ID: 27392747 [TBL] [Abstract][Full Text] [Related]
44. Conformation of a single mitochondrion in the trypomastigote stage of Trypanosoma cruzi. Paulin JJ J Parasitol; 1983 Feb; 69(1):242-4. PubMed ID: 6338196 [No Abstract] [Full Text] [Related]
45. The effect of Ca+ free medium on the two different tricarboxylate cycles in the rat brain cortex slices. Turský T; Lassánová M Physiol Bohemoslov; 1981; 30(1):11-7. PubMed ID: 6452633 [TBL] [Abstract][Full Text] [Related]
46. [Metabolic differences in Trypanosoma cruzi depending of the culturing conditions]. Docampo R; de Boiso JF; Stoppani AO Rev Asoc Argent Microbiol; 1974; 6(1):7-14. PubMed ID: 4619479 [No Abstract] [Full Text] [Related]
47. Glucose metabolism by isolated rat lung cells. Ayuso MS; Fisher AB; Parilla R; Williamson JR Am J Physiol; 1973 Nov; 225(5):1153-60. PubMed ID: 4745214 [No Abstract] [Full Text] [Related]
48. Glucose metabolism, growth and differentiation of Trypanocoma cruzi. Cáceres O; Fernandes JF Rev Bras Biol; 1976 Aug; 36(2):397-410. PubMed ID: 790488 [No Abstract] [Full Text] [Related]
49. The chondriome of selected trypanosomatids. A three-dimensional study based on serial thick sections and high voltage electron microscopy. Paulin JJ J Cell Biol; 1975 Aug; 66(2):404-13. PubMed ID: 1095599 [TBL] [Abstract][Full Text] [Related]
50. Acetate utilization and the turnover of citric acid-cycle components in pregnant sheep. Lindsay DB; Ford EJ Biochem J; 1964 Jan; 90(1):24-30. PubMed ID: 5890726 [No Abstract] [Full Text] [Related]
51. In vitro evidence that D-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex. Zanatta A; Schuck PF; Viegas CM; Knebel LA; Busanello EN; Moura AP; Wajner M Brain Res; 2009 Nov; 1298():186-93. PubMed ID: 19733154 [TBL] [Abstract][Full Text] [Related]
52. [The kinetoplast and respiratory enzymes in Trypanosomid cells]. Kallinikova VD Dokl Akad Nauk SSSR; 1967 Apr; 173(5):1193-6. PubMed ID: 5623157 [No Abstract] [Full Text] [Related]
53. Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi. Pelizzaro-Rocha KJ; Veiga-Santos P; Lazarin-Bidóia D; Ueda-Nakamura T; Dias Filho BP; Ximenes VF; Silva SO; Nakamura CV Microbes Infect; 2011 Nov; 13(12-13):1018-24. PubMed ID: 21683800 [TBL] [Abstract][Full Text] [Related]
54. Regulation of isocitrate dehydrogenase activity in Escherichia coli on adaptation to acetate. Holms WH; Bennett PM J Gen Microbiol; 1971 Jan; 65(1):57-68. PubMed ID: 4932752 [No Abstract] [Full Text] [Related]
55. Acetate's metabolism, CO2 production, and the TCA cycle. Landau BR Am J Clin Nutr; 1991 Apr; 53(4):981-2. PubMed ID: 1901196 [No Abstract] [Full Text] [Related]
56. Catabolic pathways for glucose in the cichlid fish, Cichlasoma bimaculatum. Liu DH; Krueger H; Wang C Comp Biochem Physiol; 1970 Sep; 36(1):173-81. PubMed ID: 5511558 [No Abstract] [Full Text] [Related]
57. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Lin SJ; Kaeberlein M; Andalis AA; Sturtz LA; Defossez PA; Culotta VC; Fink GR; Guarente L Nature; 2002 Jul; 418(6895):344-8. PubMed ID: 12124627 [TBL] [Abstract][Full Text] [Related]
58. Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Fonseca-Berzal C; DA Silva CF; Menna-Barreto RF; Batista MM; Escario JA; Arán VJ; Gómez-Barrio A; Soeiro Mde N Parasitology; 2016 Sep; 143(11):1469-78. PubMed ID: 27312370 [TBL] [Abstract][Full Text] [Related]
59. The Cratylia mollis seed lectin induces membrane permeability transition in isolated rat liver mitochondria and a cyclosporine a-insensitive permeability transition in Trypanosoma cruzi mitochondria. Fernandes MP; Leite AC; Araújo FF; Saad ST; Baratti MO; Correia MT; Coelho LC; Gadelha FR; Vercesi AE J Eukaryot Microbiol; 2014; 61(4):381-8. PubMed ID: 24801399 [TBL] [Abstract][Full Text] [Related]