These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3502772)
1. Electrokinetic effects on luminal and transmural fluid flow in capillaries. Winlove CP; Parker KH Biorheology; 1987; 24(6):783-93. PubMed ID: 3502772 [TBL] [Abstract][Full Text] [Related]
2. The Copley-Scott Blair phenomenon. Will it be explained by the effect of an electric double layer? Sigal VL Biorheology; 1984; 21(3):297-302. PubMed ID: 6466801 [TBL] [Abstract][Full Text] [Related]
3. Copley-Scott Blair phenomenon and electric double layer. Oka S Biorheology; 1984; 21(3):417. PubMed ID: 6466811 [No Abstract] [Full Text] [Related]
4. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries. Damiano ER Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411 [TBL] [Abstract][Full Text] [Related]
5. Copley-Scott Blair phenomenon and electric double layer. Oka S Biorheology; 1981; 18(3-6):347-53. PubMed ID: 7326380 [No Abstract] [Full Text] [Related]
6. Physical theory of some interface phenomena in hemorheology. Oka S Ann N Y Acad Sci; 1983; 416():115-27. PubMed ID: 6587804 [TBL] [Abstract][Full Text] [Related]
7. Flow behavior of neonatal and adult erythrocytes in narrow capillaries. Stadler A; Linderkamp O Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599 [TBL] [Abstract][Full Text] [Related]
8. Theoretical models of capillary flow. Skalak R Blood Cells; 1982; 8(1):147-52. PubMed ID: 7115972 [TBL] [Abstract][Full Text] [Related]
9. Biorheological aspect in relation to endoendothelial fibrin lining. Oka S Thromb Res; 1983; Suppl 5():61-5. PubMed ID: 6612673 [TBL] [Abstract][Full Text] [Related]
11. A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow. Duling BR; Sarelius IH; Jackson WF Int J Microcirc Clin Exp; 1982; 1(4):409-24. PubMed ID: 6765284 [TBL] [Abstract][Full Text] [Related]
12. A mathematical model of the flow of blood cells in fine capillaries. Ducharme R; Kapadia P; Dowden J J Biomech; 1991; 24(5):299-306. PubMed ID: 2050706 [TBL] [Abstract][Full Text] [Related]
13. Flow of red blood cells in narrow capillaries: role of membrane tension. Secomb TW; Gross JF Int J Microcirc Clin Exp; 1983; 2(3):229-40. PubMed ID: 6678849 [TBL] [Abstract][Full Text] [Related]
14. Capillary blood viscosity in microcirculation. Cortinovis A; Crippa A; Cavalli R; Corti M; Cattaneo L Clin Hemorheol Microcirc; 2006; 35(1-2):183-92. PubMed ID: 16899925 [TBL] [Abstract][Full Text] [Related]
15. Numerical study of asymmetric flows of red blood cells in capillaries. Sugihara-Seki M; Skalak R Microvasc Res; 1988 Jul; 36(1):64-74. PubMed ID: 3185304 [TBL] [Abstract][Full Text] [Related]
16. [Capillary blood flow with dynamical change of tissue pressure caused by exterior force]. Liu Y; Xu S; Yan J; Shen G; Sun W; Chew Y; Low H; Xu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):699-703. PubMed ID: 15553839 [TBL] [Abstract][Full Text] [Related]
17. Computational flow modeling in hollow-fiber dialyzers. Eloot S; De Wachter D; Van Tricht I; Verdonck P Artif Organs; 2002 Jul; 26(7):590-9. PubMed ID: 12081517 [TBL] [Abstract][Full Text] [Related]
18. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application. Ruef P; Stadler AA; Poeschl J Clin Hemorheol Microcirc; 2014; 58(2):317-31. PubMed ID: 23313873 [TBL] [Abstract][Full Text] [Related]
19. Numerical simulation of blood flow through microvascular capillary networks. Pozrikidis C Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162 [TBL] [Abstract][Full Text] [Related]
20. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary. Ye T; Li H; Lam KY Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]