BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 35027827)

  • 21. Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy.
    Meng Z; Zhang Y; She J; Zhou X; Xu J; Han X; Wang C; Zhu M; Liu Z
    Nano Lett; 2021 Feb; 21(3):1228-1237. PubMed ID: 33522825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanovaccines: An effective therapeutic approach for cancer therapy.
    Gurunathan S; Thangaraj P; Wang L; Cao Q; Kim JH
    Biomed Pharmacother; 2024 Jan; 170():115992. PubMed ID: 38070247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MnO
    Tang S; Zhou L; He H; Cui L; Ren Z; Tai Y; Xie Z; Cao Y; Meng D; Liu Q; Wu Y; Jiang J; Zhou X
    Biomaterials; 2022 Sep; 288():121706. PubMed ID: 35953328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy.
    Park W; Seong KY; Han HH; Yang SY; Hahn SK
    RSC Adv; 2021 Mar; 11(17):10393-10399. PubMed ID: 35423503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dendritic Cell-Based In Situ Nanovaccine for Reprogramming Lipid Metabolism to Boost Tumor Immunotherapy.
    Qin YT; Liu XH; An JX; Liang JL; Li CX; Jin XK; Ji P; Zhang XZ
    ACS Nano; 2023 Dec; 17(24):24947-24960. PubMed ID: 38055727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vaccination of TLR7/8 Agonist-Conjugated Antigen Nanoparticles for Cancer Immunotherapy.
    Wang N; Zhang G; Zhang P; Zhao K; Tian Y; Cui J
    Adv Healthc Mater; 2023 Sep; 12(22):e2300249. PubMed ID: 37016572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.
    Yang C; He Y; Chen F; Zhang F; Shao D; Wang Z
    Small; 2023 Apr; 19(14):e2207029. PubMed ID: 36703529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tumor Lysate-Loaded Lipid Hybrid Nanovaccine Collaborated with an Immune Checkpoint Antagonist for Combination Immunotherapy.
    Hu X; Wu T; Qin X; Qi Y; Qiao Q; Yang C; Zhang Z
    Adv Healthc Mater; 2019 Jan; 8(1):e1800837. PubMed ID: 30506847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elastic Nanovaccine Enhances Dendritic Cell-Mediated Tumor Immunotherapy.
    Li Q; Teng Z; Tao J; Shi W; Yang G; Zhang Y; Su X; Chen L; Xiu W; Yuwen L; Dong H; Mou Y
    Small; 2022 Aug; 18(32):e2201108. PubMed ID: 35734820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monophosphoryl lipid A-assembled nanovaccines enhance tumor immunotherapy.
    Li R; Hao Y; Pan W; Wang W; Min Y
    Acta Biomater; 2023 Nov; 171():482-494. PubMed ID: 37708924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the l-Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade.
    Hu Y; Lin L; Chen J; Hao K; Zhang S; Guo X; Guo Z; Tian H; Chen X
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41127-41137. PubMed ID: 32808767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy.
    Zhang L; Wu S; Qin Y; Fan F; Zhang Z; Huang C; Ji W; Lu L; Wang C; Sun H; Leng X; Kong D; Zhu D
    Nano Lett; 2019 Jul; 19(7):4237-4249. PubMed ID: 30868883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-PD-L1 peptide-conjugated prodrug nanoparticles for targeted cancer immunotherapy combining PD-L1 blockade with immunogenic cell death.
    Moon Y; Shim MK; Choi J; Yang S; Kim J; Yun WS; Cho H; Park JY; Kim Y; Seong JK; Kim K
    Theranostics; 2022; 12(5):1999-2014. PubMed ID: 35265195
    [No Abstract]   [Full Text] [Related]  

  • 34. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy.
    Jiang M; Zhao L; Cui X; Wu X; Zhang Y; Guan X; Ma J; Zhang W
    J Adv Res; 2022 Jan; 35():49-60. PubMed ID: 35003793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors.
    Qi J; Jin F; Xu X; Du Y
    Int J Nanomedicine; 2021; 16():1435-1456. PubMed ID: 33654395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mild hyperthermia promotes immune checkpoint blockade-based immunotherapy against metastatic pancreatic cancer using size-adjustable nanoparticles.
    Yu Q; Tang X; Zhao W; Qiu Y; He J; Wan D; Li J; Wang X; He X; Liu Y; Li M; Zhang Z; He Q
    Acta Biomater; 2021 Oct; 133():244-256. PubMed ID: 34000465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH-sensitive tumor-tropism hybrid membrane-coated nanoparticles for reprogramming the tumor microenvironment and boosting the antitumor immunity.
    Zhang J; Wei L; Ma X; Wang J; Liang S; Chen K; Wu M; Niu L; Zhang Y
    Acta Biomater; 2023 Aug; 166():470-484. PubMed ID: 37253416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles.
    Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y
    J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy.
    Niu L; Miao Y; Cao Z; Wei T; Zhu J; Li M; Bai B; Chen L; Liu N; Pan F; Zhu J; Wang C; Yang Y; Chen Q
    ACS Nano; 2024 Jan; 18(4):3349-3361. PubMed ID: 38230639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic nanovaccines sensitize EBV-associated tumors to checkpoint blockade therapy.
    Liu H; Chen H; Liu Z; Le Z; Nie T; Qiao D; Su Y; Mai H; Chen Y; Liu L
    Biomaterials; 2020 Oct; 255():120158. PubMed ID: 32544717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.