BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35028264)

  • 1. Heating ability of elongated magnetic nanoparticles.
    Gubanova EM; Usov NA; Oleinikov VA
    Beilstein J Nanotechnol; 2021; 12():1404-1412. PubMed ID: 35028264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Magnetosomes in Magnetic Hyperthermia.
    Usov NA; Gubanova EM
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32635626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating ability of magnetic nanoparticles with cubic and combined anisotropy.
    Usov NA; Nesmeyanov MS; Gubanova EM; Epshtein NB
    Beilstein J Nanotechnol; 2019; 10():305-314. PubMed ID: 30800569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields.
    Usov NA; Rytov RA; Bautin VA
    Beilstein J Nanotechnol; 2019; 10():2294-2303. PubMed ID: 31807414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field.
    Rytov RA; Usov NA
    Beilstein J Nanotechnol; 2023; 14():485-493. PubMed ID: 37091289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.
    Narayanaswamy V; Sambasivam S; Saj A; Alaabed S; Issa B; Al-Omari IA; Obaidat IM
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33557107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction Effects in Assembly of Magnetic Nanoparticles.
    Usov NA; Serebryakova ON; Tarasov VP
    Nanoscale Res Lett; 2017 Aug; 12(1):489. PubMed ID: 28808986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards optimal thermal distribution in magnetic hyperthermia.
    Rytov RA; Bautin VA; Usov NA
    Sci Rep; 2022 Feb; 12(1):3023. PubMed ID: 35194138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconvolution of ferromagnetic resonance spectrum of magnetic nanoparticle assembly using genetic algorithm.
    Usov NA; Serebryakova ON
    Sci Rep; 2022 Feb; 12(1):3126. PubMed ID: 35210469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of assembly of superparamagnetic nanoparticles in viscous liquid.
    Usov NA; Rytov RA; Bautin VA
    Sci Rep; 2021 Mar; 11(1):6999. PubMed ID: 33772074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia.
    Usov NA; Nesmeyanov MS; Tarasov VP
    Sci Rep; 2018 Jan; 8(1):1224. PubMed ID: 29352175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.
    Motoyama J; Hakata T; Kato R; Yamashita N; Morino T; Kobayashi T; Honda H
    Biomagn Res Technol; 2008 Oct; 6():4. PubMed ID: 18928573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.
    Barrera G; Allia P; Tiberto P
    Nanoscale; 2021 Feb; 13(7):4103-4121. PubMed ID: 33570053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe₃O₄ nanoparticles for biomedical applications.
    Sadat ME; Patel R; Sookoor J; Bud'ko SL; Ewing RC; Zhang J; Xu H; Wang Y; Pauletti GM; Mast DB; Shi D
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():52-63. PubMed ID: 25063092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Frequency Hysteresis Losses on γ-Fe₂O₃ and Fe₃O₄: Susceptibility as a Magnetic Stamp for Chain Formation.
    Morales I; Costo R; Mille N; Silva GBD; Carrey J; Hernando A; Presa P
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111274. PubMed ID: 32919638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.