These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35028784)
41. Microstructural and mechanical characterization of the layers of human descending thoracic aortas. Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867 [TBL] [Abstract][Full Text] [Related]
42. Rapid increase of glycosaminoglycans in the aorta of hypercholesterolemic rats; a negative correlation with plasma HDL concentration. Tammi M; Rönnemaa T; Viikari J Acta Physiol Scand; 1979 Feb; 105(2):188-94. PubMed ID: 217241 [TBL] [Abstract][Full Text] [Related]
44. Alpha 2(I) collagen deficient oim mice have altered biomechanical integrity, collagen content, and collagen crosslinking of their thoracic aorta. Pfeiffer BJ; Franklin CL; Hsieh FH; Bank RA; Phillips CL Matrix Biol; 2005 Oct; 24(7):451-8. PubMed ID: 16095890 [TBL] [Abstract][Full Text] [Related]
45. Correlation of Wall Microstructure and Heterogeneous Distributions of Strain in Evolving Murine Abdominal Aortic Aneurysms. Wilson JS; Bersi MR; Li G; Humphrey JD Cardiovasc Eng Technol; 2017 Jun; 8(2):193-204. PubMed ID: 28378165 [TBL] [Abstract][Full Text] [Related]
46. Effects of chlorella phospholipid on the aortic collagen and elastin metabolism and on the serum lipid content in rats with experimental arteriosclerosis. Hashimoto S; Seyama Y; Yokokura T; Mutai M Exp Mol Pathol; 1982 Oct; 37(2):150-5. PubMed ID: 6128247 [No Abstract] [Full Text] [Related]
47. Effects of age, elastin density, and glycosaminoglycan accumulation on the delamination strength of human thoracic and abdominal aortas. Shahbad R; Kamenskiy A; Razian SA; Jadidi M; Desyatova A Acta Biomater; 2024 Oct; ():. PubMed ID: 39396627 [TBL] [Abstract][Full Text] [Related]
48. [Structural and functional reconfiguration of large arteries in hypertensive disease: a role of connective tissue metabolic disturbances]. Polivoda SN; Cherepok AA; Sychev RA Klin Med (Mosk); 2004; 82(8):30-3. PubMed ID: 15468721 [TBL] [Abstract][Full Text] [Related]
49. Determinants of mechanical properties in the developing ovine thoracic aorta. Wells SM; Langille BL; Lee JM; Adamson SL Am J Physiol; 1999 Oct; 277(4):H1385-91. PubMed ID: 10516173 [TBL] [Abstract][Full Text] [Related]
50. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta. Gutiérrez-Arzapalo PY; Rodríguez-Rodríguez P; Ramiro-Cortijo D; López de Pablo ÁL; López-Giménez MR; Condezo-Hoyos L; Greenwald SE; González MDC; Arribas SM J Physiol; 2018 Dec; 596(23):5791-5806. PubMed ID: 29277911 [TBL] [Abstract][Full Text] [Related]
51. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta. Sokolis DP J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821 [TBL] [Abstract][Full Text] [Related]
52. Interactions of glycosaminglycans with collagen and elastin in bovine aorta. Radhakrishnamurthy B; Ruiz H; Berenson GS Adv Exp Med Biol; 1977; 82():160-3. PubMed ID: 920351 [No Abstract] [Full Text] [Related]
53. Developmental changes in collagen and elastin biosynthesis in the porcine aorta. Davidson JM; Hill KE; Alford JL Dev Biol; 1986 Nov; 118(1):103-11. PubMed ID: 3770292 [TBL] [Abstract][Full Text] [Related]
54. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model. Mousavi SJ; Farzaneh S; Avril S Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620 [TBL] [Abstract][Full Text] [Related]
55. Effects of hypertension on the static mechanical properties and chemical composition of the rat aorta. Berry CL; Greenwald SE Cardiovasc Res; 1976 Jul; 10(4):437-51. PubMed ID: 947333 [TBL] [Abstract][Full Text] [Related]
56. Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release. Celik M; Goktas S; Karakaya C; Cakiroglu AI; Karahuseyinoglu S; Lashkarinia SS; Ermek E; Pekkan K Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1208-H1218. PubMed ID: 32243769 [TBL] [Abstract][Full Text] [Related]
57. Is T1ρ Mapping an Alternative to Delayed Gadolinium-enhanced MR Imaging of Cartilage in the Assessment of Sulphated Glycosaminoglycan Content in Human Osteoarthritic Knees? An in Vivo Validation Study. van Tiel J; Kotek G; Reijman M; Bos PK; Bron EE; Klein S; Nasserinejad K; van Osch GJ; Verhaar JA; Krestin GP; Weinans H; Oei EH Radiology; 2016 May; 279(2):523-31. PubMed ID: 26588020 [TBL] [Abstract][Full Text] [Related]
58. Effect of hypophysectomy and growth hormone treatment on the composition of canine aorta. Sirek OV; Brosnan ME; Sirek A Adv Metab Disord; 1973; 2():Suppl 2:483-91. PubMed ID: 4269014 [No Abstract] [Full Text] [Related]
59. Biochemical basis for the difference between normal and atherosclerotic arterial fluorescence. Laifer LI; O'Brien KM; Stetz ML; Gindi GR; Garrand TJ; Deckelbaum LI Circulation; 1989 Dec; 80(6):1893-901. PubMed ID: 2532078 [TBL] [Abstract][Full Text] [Related]
60. Ultrasonic delineation of aortic microstructure: the relative contribution of elastin and collagen to aortic elasticity. Marsh JN; Takiuchi S; Lin SJ; Lanza GM; Wickline SA J Acoust Soc Am; 2004 May; 115(5 Pt 1):2032-40. PubMed ID: 15139613 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]