These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35029009)
1. An Efficient Rechargeable Aluminium-Amine Battery Working Under Quaternization Chemistry. Wang G; Dmitrieva E; Kohn B; Scheler U; Liu Y; Tkachova V; Yang L; Fu Y; Ma J; Zhang P; Wang F; Ge J; Feng X Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202116194. PubMed ID: 35029009 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. An ultrafast rechargeable aluminium-ion battery. Lin MC; Gong M; Lu B; Wu Y; Wang DY; Guan M; Angell M; Chen C; Yang J; Hwang BJ; Dai H Nature; 2015 Apr; 520(7547):325-8. PubMed ID: 25849777 [TBL] [Abstract][Full Text] [Related]
4. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage. Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323 [TBL] [Abstract][Full Text] [Related]
5. Tremella-like Vanadium Tetrasulfide as a High-Performance Cathode Material for Rechargeable Aluminum Batteries. Han X; Wu F; Zhao R; Bai Y; Wu C ACS Appl Mater Interfaces; 2023 Feb; 15(5):6888-6901. PubMed ID: 36696545 [TBL] [Abstract][Full Text] [Related]
6. A Novel Calcium-Ion Battery Based on Dual-Carbon Configuration with High Working Voltage and Long Cycling Life. Wu S; Zhang F; Tang Y Adv Sci (Weinh); 2018 Aug; 5(8):1701082. PubMed ID: 30128228 [TBL] [Abstract][Full Text] [Related]
7. A Durable and High-Voltage Mn-Graphite Dual-Ion Battery Using Mn-Based Hybrid Electrolytes. Cheng Z; Dong Q; Pu G; Song J; Zhong W; Wang J Small; 2024 Jul; 20(28):e2400389. PubMed ID: 38287734 [TBL] [Abstract][Full Text] [Related]
8. Superlattice cathodes endow cation and anion co-intercalation for high-energy-density aluminium batteries. Cui F; Li J; Lai C; Li C; Sun C; Du K; Wang J; Li H; Huang A; Peng S; Hu Y Nat Commun; 2024 Sep; 15(1):8108. PubMed ID: 39284820 [TBL] [Abstract][Full Text] [Related]
9. Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. Zhong Y; Xu X; Veder JP; Shao Z iScience; 2020 Mar; 23(3):100943. PubMed ID: 32163897 [TBL] [Abstract][Full Text] [Related]
10. Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries. Li WH; Ning QL; Xi XT; Hou BH; Guo JZ; Yang Y; Chen B; Wu XL Adv Mater; 2019 Jan; 31(4):e1804766. PubMed ID: 30489656 [TBL] [Abstract][Full Text] [Related]
11. A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. Qiao Y; Deng H; Chang Z; Cao X; Yang H; Zhou H Natl Sci Rev; 2021 Oct; 8(10):nwaa287. PubMed ID: 34858601 [TBL] [Abstract][Full Text] [Related]
12. Superlattice-Stabilized WSe Cui F; Han M; Zhou W; Lai C; Chen Y; Su J; Wang J; Li H; Hu Y Small Methods; 2022 Dec; 6(12):e2201281. PubMed ID: 36351768 [TBL] [Abstract][Full Text] [Related]
13. Rechargeable aluminum-selenium batteries with high capacity. Huang X; Liu Y; Liu C; Zhang J; Noonan O; Yu C Chem Sci; 2018 Jun; 9(23):5178-5182. PubMed ID: 29997871 [TBL] [Abstract][Full Text] [Related]
14. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
15. A phenazine-based conjugated microporous polymer as a high performing cathode for aluminium-organic batteries. Grieco R; Luzanin O; Alvan D; Liras M; Dominko R; Patil N; Bitenc J; Marcilla R Faraday Discuss; 2024 Mar; 250(0):110-128. PubMed ID: 37987255 [TBL] [Abstract][Full Text] [Related]
16. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. Li Z; Vinayan BP; Jankowski P; Njel C; Roy A; Vegge T; Maibach J; Lastra JMG; Fichtner M; Zhao-Karger Z Angew Chem Int Ed Engl; 2020 Jul; 59(28):11483-11490. PubMed ID: 32220137 [TBL] [Abstract][Full Text] [Related]
17. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries. Song Z; Qian Y; Zhang T; Otani M; Zhou H Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977 [TBL] [Abstract][Full Text] [Related]
18. Configurational Entropy Strategy Enhanced Structure Stability Achieves Robust Cathode for Aluminum Batteries. Kang R; Zhang D; Du Y; Sun C; Zhou W; Wang H; Wan J; Chen G; Zhang J Small; 2024 Feb; 20(5):e2305998. PubMed ID: 37726243 [TBL] [Abstract][Full Text] [Related]
19. Rechargeable Aluminium-Sulfur Battery with Improved Electrochemical Performance by Cobalt-Containing Electrocatalyst. Guo Y; Hu Z; Wang J; Peng Z; Zhu J; Ji H; Wan LJ Angew Chem Int Ed Engl; 2020 Dec; 59(51):22963-22967. PubMed ID: 32830352 [TBL] [Abstract][Full Text] [Related]
20. A solution-to-solid conversion chemistry enables ultrafast-charging and long-lived molten salt aluminium batteries. Meng J; Yao X; Hong X; Zhu L; Xiao Z; Jia Y; Liu F; Song H; Zhao Y; Pang Q Nat Commun; 2023 Jul; 14(1):3909. PubMed ID: 37400451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]