These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35029454)

  • 21. Waveguide-integrated light-emitting carbon nanotubes.
    Khasminskaya S; Pyatkov F; Flavel BS; Pernice WH; Krupke R
    Adv Mater; 2014 Jun; 26(21):3465-72. PubMed ID: 24643956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The polarized carbon nanotube thin film LED.
    Kinoshita M; Steiner M; Engel M; Small JP; Green AA; Hersam MC; Krupke R; Mendez EE; Avouris P
    Opt Express; 2010 Dec; 18(25):25738-45. PubMed ID: 21164919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. White nanolight source for optical nanoimaging.
    Umakoshi T; Tanaka M; Saito Y; Verma P
    Sci Adv; 2020 Jun; 6(23):eaba4179. PubMed ID: 32537508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical Detection of Single Graphene Plasmons.
    Yu R; García de Abajo FJ
    ACS Nano; 2016 Aug; 10(8):8045-53. PubMed ID: 27472914
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.
    Bhagat SA; Borghate SV; Kalyani NT; Dhoble SJ
    Luminescence; 2015 May; 30(3):251-6. PubMed ID: 25045087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.
    Matthaiakakis N; Mizuta H; Charlton MD
    Sci Rep; 2016 Jun; 6():27550. PubMed ID: 27278301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.
    Nikitin AY; Alonso-González P; Hillenbrand R
    Nano Lett; 2014 May; 14(5):2896-901. PubMed ID: 24773123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excited State Properties of Hybrid Perovskites.
    Saba M; Quochi F; Mura A; Bongiovanni G
    Acc Chem Res; 2016 Jan; 49(1):166-73. PubMed ID: 26696363
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium.
    Poursoti Z; Sun W; Bharadwaj S; Malac M; Iyer S; Khosravi F; Cui K; Qi L; Nazemifard N; Jagannath R; Rahman R; Jacob Z
    Opt Express; 2022 Apr; 30(8):12630-12638. PubMed ID: 35472896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically Excited Plasmonic Ultraviolet Light Sources.
    Ahmadivand A
    Small; 2021 Jun; 17(24):e2100819. PubMed ID: 33938142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position.
    Zakharko Y; Held M; Sadafi FZ; Gannott F; Mahdavi A; Peschel U; Taylor RN; Zaumseil J
    ACS Photonics; 2016 Jan; 3(1):1-7. PubMed ID: 26878028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic-enhanced carbon nanotube infrared bolometers.
    Mahjouri-Samani M; Zhou YS; He XN; Xiong W; Hilger P; Lu YF
    Nanotechnology; 2013 Jan; 24(3):035502. PubMed ID: 23263607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonics in Biology and Plasmon-Controlled Fluorescence.
    Lakowicz JR
    Plasmonics; 2006 Mar; 1(1):5-33. PubMed ID: 19890454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films.
    Yu D; Liu H; Peng LM; Wang S
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3462-7. PubMed ID: 25651927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices.
    O'Dwyer C; Szachowicz M; Visimberga G; Lavayen V; Newcomb SB; Torres CM
    Nat Nanotechnol; 2009 Apr; 4(4):239-44. PubMed ID: 19350034
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra High-efficiency Integrated Mid Infrared to Visible Up-conversion System.
    Motmaen A; Rostami A; Matloub S
    Sci Rep; 2020 Jun; 10(1):9325. PubMed ID: 32518387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.