These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3502995)

  • 1. Corneal morphogenesis in the Mov13 mutant mouse is characterized by normal cellular organization but disordered and thin collagen.
    Bard JB; Kratochwil K
    Development; 1987 Nov; 101(3):547-55. PubMed ID: 3502995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The extracellular matrix of the developing cornea: diversity, deposition and function.
    Bard JB; Bansal MK; Ross AS
    Development; 1988; 103 Suppl():195-205. PubMed ID: 3250851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The morphogenesis of the chick primary corneal stroma. I. New observations on collagen organization in vivo help explain stromal deposition and growth.
    Bard JB; Bansal MK
    Development; 1987 May; 100(1):135-45. PubMed ID: 3652963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does chondroitin sulfate have a role to play in the morphogenesis of the chick primary corneal stroma?
    Bansal MK; Ross AS; Bard JB
    Dev Biol; 1989 May; 133(1):185-95. PubMed ID: 2495996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts.
    Birk DE; Trelstad RL
    J Cell Biol; 1984 Dec; 99(6):2024-33. PubMed ID: 6542105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of collagen types I and V in the embryonic chicken cornea.
    Birk DE; Fitch JM; Linsenmayer TF
    Invest Ophthalmol Vis Sci; 1986 Oct; 27(10):1470-7. PubMed ID: 3531080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-independent matrix configuration in early corneal development.
    Young RD; Knupp C; Koudouna E; Ralphs JR; Ma Y; Lwigale PY; Jester JV; Quantock AJ
    Exp Eye Res; 2019 Oct; 187():107772. PubMed ID: 31445001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea.
    Young RD; Gealy EC; Liles M; Caterson B; Ralphs JR; Quantock AJ
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3083-8. PubMed ID: 17591877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell regulation of collagen fibril macrostructure during corneal morphogenesis.
    Koudouna E; Mikula E; Brown DJ; Young RD; Quantock AJ; Jester JV
    Acta Biomater; 2018 Oct; 79():96-112. PubMed ID: 30170195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human corneal fibrillogenesis. Collagen V structural analysis and fibrillar assembly by stromal fibroblasts in culture.
    Ruggiero F; Burillon C; Garrone R
    Invest Ophthalmol Vis Sci; 1996 Aug; 37(9):1749-60. PubMed ID: 8759342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chick corneal development in vitro: diverse effects of pH on collagen assembly.
    Bard JB; Hulmes DJ; Purdom IF; Ross AS
    J Cell Sci; 1993 Aug; 105 ( Pt 4)():1045-55. PubMed ID: 8227194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenesis of rabbit corneal stroma.
    Cintron C; Covington H; Kublin CL
    Invest Ophthalmol Vis Sci; 1983 May; 24(5):543-56. PubMed ID: 6841000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea.
    Connon CJ; Meek KM; Kinoshita S; Quantock AJ
    Exp Eye Res; 2004 May; 78(5):909-15. PubMed ID: 15051472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal epithelial branching morphogenesis in the absence of collagen I.
    Kratochwil K; Dziadek M; Löhler J; Harbers K; Jaenisch R
    Dev Biol; 1986 Oct; 117(2):596-606. PubMed ID: 3758483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of the collagen I-deficient Mov13 mouse mutant to analyse epithelial-mesenchymal tissue interaction.
    Kratochwil K
    Cell Differ Dev; 1988 Nov; 25 Suppl():119-26. PubMed ID: 3061586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibril assembly in the developing avian primary corneal stroma.
    Fitch JM; Linsenmayer CM; Linsenmayer TF
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):862-9. PubMed ID: 8125749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix production by embryonic epithelium cultured on type IV collagen. Deposition of a primary corneal stroma-like structure containing large irregular type I fibrils without type II collagen.
    Ruggiero F; Barge A; Coll JL; Garrone R
    Cell Differ Dev; 1990 Feb; 29(2):95-104. PubMed ID: 2182182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI.
    Alroy J; Haskins M; Birk DE
    Exp Eye Res; 1999 May; 68(5):523-30. PubMed ID: 10328965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotypic collagen fibrils and stabilizing collagens. Controlling elements in corneal morphogenesis?
    Linsenmayer TF; Fitch JM; Birk DE
    Ann N Y Acad Sci; 1990; 580():143-60. PubMed ID: 2159749
    [No Abstract]   [Full Text] [Related]  

  • 20. A new method of detecting changes in corneal health in response to toxic insults.
    Khan MFJ; Nag TC; Igathinathane C; Osuagwu UL; Rubini M
    Micron; 2015 Nov; 78():45-53. PubMed ID: 26312735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.