These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35029971)

  • 1. Computational and Experimental Model to Study Immunobead-Based Assays in Microfluidic Mixing Platforms.
    Aghamohammadi H; Hosseini SA; Srikant S; Wong A; Poudineh M
    Anal Chem; 2022 Feb; 94(4):2087-2098. PubMed ID: 35029971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic, bead-based assay: Theory and experiments.
    Thompson JA; Bau HH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jan; 878(2):228-36. PubMed ID: 19766545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Dynamic Concentration Profile Using A Microfluidic Device Integrating Pneumatic Microvalves.
    Chen C; Li P; Guo T; Chen S; Xu D; Chen H
    Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications.
    Sochol RD; Lu A; Lei J; Iwai K; Lee LP; Lin L
    Lab Chip; 2014 May; 14(9):1585-94. PubMed ID: 24632685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification.
    Gómez-Pastora J; González-Fernández C; Real E; Iles A; Bringas E; Furlani EP; Ortiz I
    Lab Chip; 2018 May; 18(11):1593-1606. PubMed ID: 29748668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An acoustofluidic device for efficient mixing over a wide range of flow rates.
    Bachman H; Chen C; Rufo J; Zhao S; Yang S; Tian Z; Nama N; Huang PH; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1238-1248. PubMed ID: 32104816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays.
    Zimmermann M; Delamarche E; Wolf M; Hunziker P
    Biomed Microdevices; 2005 Jun; 7(2):99-110. PubMed ID: 15940422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.
    Kwak TJ; Nam YG; Najera MA; Lee SW; Strickler JR; Chang WJ
    PLoS One; 2016; 11(11):e0166068. PubMed ID: 27814386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.