These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35029971)

  • 21. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.
    Mirasoli M; Guardigli M; Michelini E; Roda A
    J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.
    Resto PJ; Mogen BJ; Berthier E; Williams JC
    Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood.
    Kuo JN; Li BS
    Biomed Microdevices; 2014 Aug; 16(4):549-58. PubMed ID: 24647859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications.
    Shao G; Lu D; Fu Z; Du D; Ozanich RM; Wang W; Lin Y
    Analyst; 2016 Jan; 141(1):206-15. PubMed ID: 26566573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical and experimental characterization of a novel modular passive micromixer.
    Pennella F; Rossi M; Ripandelli S; Rasponi M; Mastrangelo F; Deriu MA; Ridolfi L; Kähler CJ; Morbiducci U
    Biomed Microdevices; 2012 Oct; 14(5):849-62. PubMed ID: 22711456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal.
    Sharma S; Bhatia V
    Nanomedicine (Lond); 2021 Jun; 16(15):1329-1342. PubMed ID: 34027677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation analysis of rectifying microfluidic mixing with field-effect-tunable electrothermal induced flow.
    Liu W; Ren Y; Tao Y; Yao B; Li Y
    Electrophoresis; 2018 Mar; 39(5-6):779-793. PubMed ID: 28873212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Multianalyte Microfluidic Homogeneous Immunoassay on Electrokinetically Driven Beads.
    Thiriet PE; Medagoda D; Porro G; Guiducci C
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33371213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic mixing in microchannels.
    Glasgow I; Batton J; Aubry N
    Lab Chip; 2004 Dec; 4(6):558-62. PubMed ID: 15570365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.