These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35029972)

  • 1. Quantitative Determination of the Hydrophobicity of Nanoparticles.
    Li G; Cao Z; Ho KKHY; Zuo YY
    Anal Chem; 2022 Feb; 94(4):2078-2086. PubMed ID: 35029972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive methodology to determine hydrophobicity of nanomaterials in situ.
    Crandon LE; Boenisch KM; Harper BJ; Harper SL
    PLoS One; 2020; 15(6):e0233844. PubMed ID: 32492068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of surface hydrophobicity of engineered nanoparticles.
    Xiao Y; Wiesner MR
    J Hazard Mater; 2012 May; 215-216():146-51. PubMed ID: 22417396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles.
    Cao Z; Tsai SN; Zuo YY
    Anal Chem; 2019 Oct; 91(20):12819-12826. PubMed ID: 31518113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope.
    Fu W; Zhang W
    Phys Chem Chem Phys; 2018 Oct; 20(37):24434-24443. PubMed ID: 30221292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, size control, surface deposition, and catalytic reactivity of hydrophobic corrolazine nanoparticles in an aqueous environment.
    Cho K; Kerber WD; Lee SR; Wan A; Batteas JD; Goldberg DP
    Inorg Chem; 2010 Sep; 49(18):8465-73. PubMed ID: 20735145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles.
    Wang Z; Quik JTK; Song L; Wouterse M; Peijnenburg WJGM
    Environ Toxicol Chem; 2018 Apr; 37(4):1024-1031. PubMed ID: 29240259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.
    Baalousha M; Prasad A; Lead JR
    Environ Sci Process Impacts; 2014 May; 16(6):1338-47. PubMed ID: 24668140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penetration of nanoparticles across a lipid bilayer: effects of particle stiffness and surface hydrophobicity.
    Wang S; Guo H; Li Y; Li X
    Nanoscale; 2019 Mar; 11(9):4025-4034. PubMed ID: 30768108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Profiling of 2D Surface Hydrophobicity Recognition of Environmental Media via AFM Measurements In Situ.
    Zhang Y; Zhu X; Chen B
    Environ Sci Technol; 2020 Aug; 54(15):9315-9324. PubMed ID: 32633943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy.
    Zhang Y; Zhu X; Chen B
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):255-264. PubMed ID: 34626972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA.
    Li X; Fang X; Ding Y; Li J; Cao Y
    Toxicol Mech Methods; 2018 Sep; 28(7):520-528. PubMed ID: 29697006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.
    Shima F; Akagi T; Uto T; Akashi M
    Biomaterials; 2013 Dec; 34(37):9709-16. PubMed ID: 24016848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.
    Halamoda-Kenzaoui B; Ceridono M; Urbán P; Bogni A; Ponti J; Gioria S; Kinsner-Ovaskainen A
    J Nanobiotechnology; 2017 Jun; 15(1):48. PubMed ID: 28651541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity.
    Wohlleben W; Driessen MD; Raesch S; Schaefer UF; Schulze C; Vacano Bv; Vennemann A; Wiemann M; Ruge CA; Platsch H; Mues S; Ossig R; Tomm JM; Schnekenburger J; Kuhlbusch TA; Luch A; Lehr CM; Haase A
    Nanotoxicology; 2016 Sep; 10(7):970-80. PubMed ID: 26984182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane.
    Liu Y; Li S; Liu X; Sun H; Yue T; Zhang X; Yan B; Cao D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23822-23831. PubMed ID: 31250627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of the fusogenic peptide B18 onto solid surfaces: insights into the mechanism of peptide assembly.
    Rocha S; Pereira MC; Coelho MA; Möhwald H; Brezesinski G
    Langmuir; 2007 Apr; 23(9):5022-8. PubMed ID: 17391050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Study of the Forces Driving Aggregation of Ultrasmall Nanoparticles in Biological Fluids.
    Hassan SA
    ACS Nano; 2017 Apr; 11(4):4145-4154. PubMed ID: 28314103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.