BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3503)

  • 1. Apparent oxidation-reduction potential of Clostridium acidi-urici ferredoxin. Effect of pH, ionic strength, and amino acid replacements.
    Lode ET; Murray CL; Rabinowitz JC
    J Biol Chem; 1976 Mar; 251(6):1683-7. PubMed ID: 3503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivatives of Clostridium acidi-urici ferredoxin containing altered amino acid sequences. Semisynthetic synthesis, biological activity, and stability.
    Lode ET; Murray CL; Rabinowitz JC
    J Biol Chem; 1976 Mar; 251(6):1675-82. PubMed ID: 1254593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of 13C nuclear magnetic resonance of aromatic amino acid residues to determine the midpoint oxidation-reduction potential of each iron-sulfur cluster of Clostridium acidi-urici and Clostridium pasteurianum ferredoxins.
    Packer EL; Sternlicht H
    J Biol Chem; 1975 Mar; 250(6):2062-72. PubMed ID: 1116998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct assignment of the cysteinyl, the slowly exchangeable, and the aromatic ring 1H nuclear magnetic resonances in clostridial-type ferredoxins.
    Packer EL; Sweeney WV; Rabinowitz JC
    J Biol Chem; 1977 Apr; 252(7):2245-53. PubMed ID: 191457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and properties of Clostridium acidi-urici (Leu2)-ferredoxin: a function of the peptide chain and evidence against the direct role of the aromatic residues in electron transfer.
    Lode ET; Murray CL; Sweeney WV; Rabinowitz JC
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1361-5. PubMed ID: 4364535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The possible role of aromatic residues of Clostridium acidi-urici ferredoxin in electron transport.
    Packer EL; Sternlicht H; Rabinowitz JC
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3278-82. PubMed ID: 4508321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO 2 reduction to formate in Clostridium acidi-urici.
    Thauer RK
    J Bacteriol; 1973 Apr; 114(1):443-4. PubMed ID: 4349033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation-reduction properties of several low potential iron-sulfur proteins and of methylviologen.
    Stombaugh NA; Sundquist JE; Burris RH; Orme-Johnson WH
    Biochemistry; 1976 Jun; 15(12):2633-41. PubMed ID: 181047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amino acid sequence of ferredoxin from Clostridium acidi-urici.
    Rall SC; Bolinger RE; Cole RD
    Biochemistry; 1969 Jun; 8(6):2486-96. PubMed ID: 5799135
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidation-reduction properties of the two Fe4S4 clusters in Clostridium pasteurianum ferredoxin.
    Prince RC; Adams MW
    J Biol Chem; 1987 Apr; 262(11):5125-8. PubMed ID: 3031041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser flash photolysis studies of the kinetics of reduction of spinach and Clostridium ferredoxins by a viologen analogue: electrostatically controlled nonproductive complex formation and differential reactivity among the iron-sulfur clusters.
    Navarro JA; Cheddar G; Tollin G
    Biochemistry; 1989 Jul; 28(14):6057-65. PubMed ID: 2775750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of the oxidized 2[4Fe-4S] ferredoxin from Clostridium pasteurianum.
    Bertini I; Donaire A; Feinberg BA; Luchinat C; Piccioli M; Yuan H
    Eur J Biochem; 1995 Aug; 232(1):192-205. PubMed ID: 7556151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assignment of the cysteinyl 13C nuclear magnetic resonances and comparison of other aliphatic amino acid resonances of Clostridium acidi-urici, Clostridium pasteurianum, and Peptococcus aerogenes ferredoxins.
    Packer EL; Rabinowitz JC; Sternlicht H
    J Biol Chem; 1978 Nov; 253(21):7722-30. PubMed ID: 701285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the selenium-substituted 2 [4Fe-4Se] ferredoxin from Clostridium pasteurianum.
    Moulis JM; Meyer J
    Biochemistry; 1982 Sep; 21(19):4762-71. PubMed ID: 6753926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of the pH dependence of the midpoint reduction potential in Clostridium pasteurianum ferredoxin:oxidation state-dependent hydrogen ion association.
    Magliozzo RS; McIntosh BA; Sweeney WV
    J Biol Chem; 1982 Apr; 257(7):3506-9. PubMed ID: 7061493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate-ferredoxin oxidoreductase from Clostridium acidi-urici.
    Rabinowitz JC
    Methods Enzymol; 1975; 41():334-7. PubMed ID: 236455
    [No Abstract]   [Full Text] [Related]  

  • 17. Probing the role of electrostatic forces in the interaction of Clostridium pasteurianum ferredoxin with its redox partners.
    Moulis JM; Davasse V
    Biochemistry; 1995 Dec; 34(51):16781-8. PubMed ID: 8527453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Clostridium acidi-urici ferredoxin at 5-A resolution based on measurements of anomalous X-ray scattering at multiple wavelengths.
    Murthy HM; Hendrickson WA; Orme-Johnson WH; Merritt EA; Phizackerley RP
    J Biol Chem; 1988 Dec; 263(34):18430-6. PubMed ID: 3192542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of conserved aromatic residues on the electron transfer reactivity of 2[4Fe-4S] ferredoxins.
    Quinkal I; Kyritsis P; Kohzuma T; Im SC; Sykes AG; Moulis JM
    Biochim Biophys Acta; 1996 Jul; 1295(2):201-8. PubMed ID: 8695647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A four-iron, four-sulfide ferredoxin with high thermostability from Clostridium thermoaceticum.
    Yang SS; Ljungdahl LG; LeGall J
    J Bacteriol; 1977 Jun; 130(3):1084-90. PubMed ID: 863852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.