BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35030362)

  • 1. Viability of a practical multicyclic sorption-based water harvester with improved water yield.
    Wang W; Pan Q; Xing Z; Liu X; Dai Y; Wang R; Ge T
    Water Res; 2022 Mar; 211():118029. PubMed ID: 35030362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications.
    Entezari A; Esan OC; Yan X; Wang R; An L
    Adv Mater; 2023 Oct; 35(40):e2210957. PubMed ID: 36869587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting.
    Deng F; Chen Z; Wang C; Xiang C; Poredoš P; Wang R
    Adv Sci (Weinh); 2022 Nov; 9(33):e2204724. PubMed ID: 36209387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti
    Wu Q; Su W; Li Q; Tao Y; Li H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38906-38915. PubMed ID: 34351132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting.
    Sun J; Ni F; Gu J; Si M; Liu D; Zhang C; Shui X; Xiao P; Chen T
    Adv Mater; 2024 Jul; 36(27):e2314175. PubMed ID: 38635920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems.
    Bai Z; Wang P; Xu J; Wang R; Li T
    Sci Bull (Beijing); 2024 Mar; 69(5):671-687. PubMed ID: 38105159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Day Multicyclic Atmospheric Water Harvesting Enabled by Polyelectrolyte Hydrogel with Hybrid Desorption Mode.
    Shan H; Poredoš P; Ye Z; Qu H; Zhang Y; Zhou M; Wang R; Tan SC
    Adv Mater; 2023 Sep; 35(35):e2302038. PubMed ID: 37199373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An atmospheric water harvesting system based on the "Optimal Harvesting Window" design for worldwide water production.
    Li Q; Shao Z; Zou Q; Pan Q; Zhao Y; Feng Y; Wang W; Wang R; Ge T
    Sci Bull (Beijing); 2024 May; 69(10):1437-1447. PubMed ID: 38531718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macro-porous structured aerogel with enhanced ab/desorption kinetics for sorption-based atmospheric water harvesting.
    Deng K; Zhu M; Chen J; Wang Z; Yang H; Xu H; He G; Zhan Y; Gu S; Liu X; Shang B
    J Colloid Interface Sci; 2024 Feb; 656():466-473. PubMed ID: 38007938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Salt Leakage Mitigation and Comparing Sorption-Desorption Characteristics of Polyacrylamide-Based Hydrogels.
    Liu Y; Liu Z; Qie Z; Wang Z; Sun W
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon.
    Feng JH; Lu F; Chen Z; Jia MM; Chen YL; Lin WH; Wu QY; Li Y; Xue M; Chen XM
    Chem Sci; 2024 Jun; 15(25):9557-9565. PubMed ID: 38939138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca-MOF-Derived Porous Sorbents for High-Yield Solar-Driven Atmosphere Water Harvesting.
    Hu Y; Wang Y; Fang Z; Yao B; Ye Z; Peng X
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44942-44952. PubMed ID: 37703912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Atmospheric Water Harvesting over a Wide RH Range Enabled by Super Hygroscopic Composite Aerogels.
    Zhang X; Qu H; Li X; Zhang L; Zhang Y; Yang J; Zhou M; Suresh L; Liu S; Tan SC
    Adv Mater; 2024 Jan; ():e2310219. PubMed ID: 38219071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous atmospheric water production and 24-hour power generation enabled by moisture-induced energy harvesting.
    Li T; Wu M; Xu J; Du R; Yan T; Wang P; Bai Z; Wang R; Wang S
    Nat Commun; 2022 Nov; 13(1):6771. PubMed ID: 36351950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hygroscopic-Microgels-Enabled Rapid Water Extraction from Arid Air.
    Guan W; Lei C; Guo Y; Shi W; Yu G
    Adv Mater; 2024 Mar; 36(12):e2207786. PubMed ID: 36239247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.
    Hanikel N; Prévot MS; Fathieh F; Kapustin EA; Lyu H; Wang H; Diercks NJ; Glover TG; Yaghi OM
    ACS Cent Sci; 2019 Oct; 5(10):1699-1706. PubMed ID: 31660438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Atmospheric Water-Harvester with Ultrahigh Uptake-Release Efficiency at Low Humidity.
    Luo Q; Chen M; Yu D; Zhang T; Zhao J; Zhang L; Han X; Zhou M; Hou Y; Zheng Y
    ACS Nano; 2024 Jun; 18(22):14650-14660. PubMed ID: 38761383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical Natural Pollen Cell-Derived Composite Sorbents for Efficient Atmospheric Water Harvesting.
    Lu K; Liu C; Liu J; He Y; Tian X; Liu Z; Cao Y; Shen Y; Huang W; Zhang K
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.