These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 35030426)

  • 1. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of unmanned aerial vehicles in intertidal reef monitoring.
    Murfitt SL; Allan BM; Bellgrove A; Rattray A; Young MA; Ierodiaconou D
    Sci Rep; 2017 Aug; 7(1):10259. PubMed ID: 28860645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated monitoring and prediction of thermal discharge from nuclear power plants using satellite, UAV, and numerical simulation.
    Wang L; Li G; Shi H; Zhu J; Zhan C; Zhang X; Wang Q
    Environ Monit Assess; 2024 Jul; 196(8):736. PubMed ID: 39009747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned Aerial Vehicle (UAV) applications in coastal zone management-a review.
    Adade R; Aibinu AM; Ekumah B; Asaana J
    Environ Monit Assess; 2021 Mar; 193(3):154. PubMed ID: 33649893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by unmanned aerial vehicle in low-light conditions.
    A Baker C; R Rapp R; Elwakil E; Zhang J
    J Emerg Manag; 2020; 18(1):27-41. PubMed ID: 32031670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning.
    Sharma P; Leigh L; Chang J; Maimaitijiang M; Caffé M
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor.
    Al-Ali ZM; Abdullah MM; Asadalla NB; Gholoum M
    Environ Monit Assess; 2020 May; 192(6):389. PubMed ID: 32447581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective coastal Escherichia coli monitoring by unmanned aerial vehicles (UAV) thermal infrared images.
    Cheng KH; Jiao JJ; Luo X; Yu S
    Water Res; 2022 Aug; 222():118900. PubMed ID: 35932703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locating chimpanzee nests and identifying fruiting trees with an unmanned aerial vehicle.
    van Andel AC; Wich SA; Boesch C; Koh LP; Robbins MM; Kelly J; Kuehl HS
    Am J Primatol; 2015 Oct; 77(10):1122-34. PubMed ID: 26179423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.
    Huang H; Deng J; Lan Y; Yang A; Deng X; Zhang L
    PLoS One; 2018; 13(4):e0196302. PubMed ID: 29698500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage.
    Zhang S; Zhao G; Lang K; Su B; Chen X; Xi X; Zhang H
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barriers to Using UAVs in Conservation and Environmental Management: A Systematic Review.
    Walker SE; Sheaves M; Waltham NJ
    Environ Manage; 2023 May; 71(5):1052-1064. PubMed ID: 36525068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-automated detection of ungulates using UAV imagery and reflective spectrometry.
    De Kock ME; Pohůnek V; Hejcmanová P
    J Environ Manage; 2022 Oct; 320():115807. PubMed ID: 35944320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drone images afford more detections of marine wildlife than real-time observers during simultaneous large-scale surveys.
    Hodgson AJ; Kelly N; Peel D
    PeerJ; 2023; 11():e16186. PubMed ID: 37941930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The advantages of using drones over space-borne imagery in the mapping of mangrove forests.
    Ruwaimana M; Satyanarayana B; Otero V; M Muslim A; Syafiq A M; Ibrahim S; Raymaekers D; Koedam N; Dahdouh-Guebas F
    PLoS One; 2018; 13(7):e0200288. PubMed ID: 30020959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on drone-based harmful algae blooms monitoring.
    Wu D; Li R; Zhang F; Liu J
    Environ Monit Assess; 2019 Mar; 191(4):211. PubMed ID: 30852736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.