These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 35030426)

  • 41. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys.
    Miranda V; Pina P; Heleno S; Vieira G; Mora C; E G R Schaefer C
    Sci Total Environ; 2020 Feb; 704():135295. PubMed ID: 31836216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring of Antarctica's Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI.
    Raniga D; Amarasingam N; Sandino J; Doshi A; Barthelemy J; Randall K; Robinson SA; Gonzalez F; Bollard B
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drone technology in municipal solid waste management and landfilling: A comprehensive review.
    Sliusar N; Filkin T; Huber-Humer M; Ritzkowski M
    Waste Manag; 2022 Feb; 139():1-16. PubMed ID: 34923184
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UAV-based remote sensing of turbidity in coastal environment for regulatory monitoring and assessment.
    Kieu HT; Pak HY; Trinh HL; Pang DSC; Khoo E; Law AW
    Mar Pollut Bull; 2023 Nov; 196():115482. PubMed ID: 37864857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated mapping of
    Galuszynski NC; Duker R; Potts AJ; Kattenborn T
    PeerJ; 2022; 10():e14219. PubMed ID: 36262418
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying seaweed and seagrass beach deposits using high-resolution UAV imagery.
    Li Y; Gundersen H; Poulsen RN; Xie L; Ge Z; Hancke K
    J Environ Manage; 2023 Apr; 331():117171. PubMed ID: 36623360
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: disturbance effects and species recognition.
    McEvoy JF; Hall GP; McDonald PG
    PeerJ; 2016; 4():e1831. PubMed ID: 27020132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using remote sensing to detect whale strandings in remote areas: The case of sei whales mass mortality in Chilean Patagonia.
    Fretwell PT; Jackson JA; Ulloa Encina MJ; Häussermann V; Perez Alvarez MJ; Olavarría C; Gutstein CS
    PLoS One; 2019; 14(10):e0222498. PubMed ID: 31622348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of Unmanned Aerial Vehicle Based Imagery in Turfgrass Field Trials.
    Zhang J; Virk S; Porter W; Kenworthy K; Sullivan D; Schwartz B
    Front Plant Sci; 2019; 10():279. PubMed ID: 30930917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dataset of 3D computer models of Late Miocene Mount Messenger Formation outcrops in New Zealand, built with UAV drones.
    Kamaruzaman EH; La Croix AD; Kamp PJJ
    Data Brief; 2024 Feb; 52():110035. PubMed ID: 38293575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimation of dump and landfill waste volumes using unmanned aerial systems.
    Filkin T; Sliusar N; Huber-Humer M; Ritzkowski M; Korotaev V
    Waste Manag; 2022 Feb; 139():301-308. PubMed ID: 34998186
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach.
    Ren H; Zhao Y; Xiao W; Zhang J; Chen C; Ding B; Yang X
    J Environ Manage; 2022 Sep; 317():115502. PubMed ID: 35751291
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scots pine stands biomass assessment using 3D data from unmanned aerial vehicle imagery in the Chernobyl Exclusion Zone.
    Holiaka D; Kato H; Yoschenko V; Onda Y; Igarashi Y; Nanba K; Diachuk P; Holiaka M; Zadorozhniuk R; Kashparov V; Chyzhevskyi I
    J Environ Manage; 2021 Oct; 295():113319. PubMed ID: 34348433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A framework for precisely thinning planning in a managed pure Chinese fir forest based on UAV remote sensing.
    Zhou P; Sun Z; Zhang X; Wang Y
    Sci Total Environ; 2023 Feb; 860():160482. PubMed ID: 36464045
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using canopy height model derived from UAV imagery as an auxiliary for spectral data to estimate the canopy cover of mixed broadleaf forests.
    Miraki M; Sohrabi H
    Environ Monit Assess; 2021 Dec; 194(1):45. PubMed ID: 34958415
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs).
    Cheng KH; Chan SN; Lee JHW
    Mar Pollut Bull; 2020 Mar; 152():110889. PubMed ID: 32479279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges.
    Fernández-Guisuraga JM; Sanz-Ablanedo E; Suárez-Seoane S; Calvo L
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443914
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface sediment classification using a deep learning model and unmanned aerial vehicle data of tidal flats.
    Kim KL; Woo HJ; Jou HT; Jung HC; Lee SK; Ryu JH
    Mar Pollut Bull; 2024 Jan; 198():115823. PubMed ID: 38039578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Species level mapping of a seagrass bed using an unmanned aerial vehicle and deep learning technique.
    Tahara S; Sudo K; Yamakita T; Nakaoka M
    PeerJ; 2022; 10():e14017. PubMed ID: 36275465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.