These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 35030477)

  • 1. Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning.
    Santamaría-Vázquez E; Martínez-Cagigal V; Pérez-Velasco S; Marcos-Martínez D; Hornero R
    Comput Methods Programs Biomed; 2022 Mar; 215():106623. PubMed ID: 35030477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces.
    Santamaria-Vazquez E; Martinez-Cagigal V; Vaquerizo-Villar F; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2773-2782. PubMed ID: 33378260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous Control of ERP-Based BCI Spellers Using Steady-State Visual Evoked Potentials Elicited by Peripheral Stimuli.
    Santamaria-Vazquez E; Martinez-Cagigal V; Gomez-Pilar J; Hornero R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1883-1892. PubMed ID: 31403437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eliminating or Shortening the Calibration for a P300 Brain-Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study.
    Gao W; Huang W; Li M; Gu Z; Pan J; Yu T; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1754-1763. PubMed ID: 37030734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces.
    Da I; Dui LG; Ferrante S; Pedrocchi A; Antonietti A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):4892-4902. PubMed ID: 35552154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control or non-control state: that is the question! An asynchronous visual P300-based BCI approach.
    Pinegger A; Faller J; Halder S; Wriessnegger SC; Müller-Putz GR
    J Neural Eng; 2015 Feb; 12(1):014001. PubMed ID: 25587889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOCNN: A Multiscale Deep Convolutional Neural Network for ERP-Based Brain-Computer Interfaces.
    Jin J; Xu R; Daly I; Zhao X; Wang X; Cichocki A
    IEEE Trans Cybern; 2024 Sep; 54(9):5565-5576. PubMed ID: 38713574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 10. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient deep learning framework for P300 evoked related potential detection in EEG signal.
    Havaei P; Zekri M; Mahmoudzadeh E; Rabbani H
    Comput Methods Programs Biomed; 2023 Feb; 229():107324. PubMed ID: 36586179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training.
    Berke Guney O; Ozkan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535036
    [No Abstract]   [Full Text] [Related]  

  • 13. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning Invariant Patterns Based on a Convolutional Neural Network and Big Electroencephalography Data for Subject-Independent P300 Brain-Computer Interfaces.
    Gao W; Yu T; Yu JG; Gu Z; Li K; Huang Y; Yu ZL; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1047-1057. PubMed ID: 34033543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 16. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection.
    Nagel S; Spüler M
    Sci Rep; 2019 Jun; 9(1):8269. PubMed ID: 31164679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-calibration algorithm in an asynchronous P300-based brain-computer interface.
    Schettini F; Aloise F; Aricò P; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035004. PubMed ID: 24838347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 20. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.