These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3503060)

  • 1. The translocation of mitochondria along insect ovarian microtubules from isolated nutritive tubes: a simple reactivated model.
    Stebbings H; Hunt C
    J Cell Sci; 1987 Dec; 88 ( Pt 5)():641-8. PubMed ID: 3503060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence for the nature of the binding of mitochondria to microtubules in ovarian nutritive tubes of an hemipteran insect.
    Stebbings H
    Cell Tissue Res; 1997 Aug; 289(2):333-7. PubMed ID: 9211836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule polarity in the nutritive tubes of insect ovarioles.
    Stebbings H; Hunt C
    Cell Tissue Res; 1983; 233(1):133-41. PubMed ID: 6684504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundant nutritive tubes in insect ovarioles: the fate of an extensive microtubule transport system.
    Bennett CE; Stebbings H
    Cell Biol Int Rep; 1979 Oct; 3(7):577-83. PubMed ID: 535036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of microtubule associated cytoplasmic transport. Isolation and preliminary characterisation of a microtubule transport system.
    Hyams JS; Stebbings H
    Cell Tissue Res; 1979 Jan; 196(1):103-16. PubMed ID: 570458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(A) mRNA is attached to insect ovarian microtubules in vivo in a nucleotide-sensitive manner.
    Stephen S; Talbot NJ; Stebbings H
    Cell Motil Cytoskeleton; 1999; 43(2):159-66. PubMed ID: 10379840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The distribution and function of microtubules in nutritive tubes.
    Hyams JS; Stebbings H
    Tissue Cell; 1977; 9(3):537-45. PubMed ID: 929581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Corkscrewing', as evidence for force generation within a detergent-extracted microtubule translocation system from insect ovaries.
    Stebbings H; Sharma KK
    J Cell Sci; 1989 Jan; 92 ( Pt 1)():21-7. PubMed ID: 2777912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of the trophic chamber and nutritive cord of Aspidiotus hederae (Homoptera, Coccoidea).
    Ksiazkiewicz M
    Cell Tissue Res; 1980; 213(1):149-57. PubMed ID: 7459994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unipolar microtubule array is directly involved in nurse cell-oocyte transport.
    Harrison RE; Huebner E
    Cell Motil Cytoskeleton; 1997; 36(4):355-62. PubMed ID: 9096957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of MAPs and motors in the bundling and shimmering of native microtubules from insect ovarioles.
    Hunt C; Stebbings H
    Cell Motil Cytoskeleton; 1994; 27(1):69-78. PubMed ID: 8194111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A staufen-like RNA-binding protein in translocation channels linking nurse cells to oocytes in Notonecta shows nucleotide-dependent attachment to microtubules.
    Hurst S; Talbot NJ; Stebbings H
    J Cell Sci; 1999 Sep; 112 ( Pt 17)():2947-55. PubMed ID: 10444389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila growth cones advance by forward translocation of the neuronal cytoskeletal meshwork in vivo.
    Roossien DH; Lamoureux P; Van Vactor D; Miller KE
    PLoS One; 2013; 8(11):e80136. PubMed ID: 24244629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of axonemal dynein to microtubules comprising the cytoplasmic transport system in insect ovarioles.
    Stebbings H; Hunt C
    Cell Biol Int Rep; 1985 Mar; 9(3):245-52. PubMed ID: 3157460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP.
    Lasek RJ; Brady ST
    Nature; 1985 Aug 15-21; 316(6029):645-7. PubMed ID: 4033761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubules and the mechanism of directed organelle movement.
    Schnapp BJ; Vale RD; Sheetz MP; Reese TS
    Ann N Y Acad Sci; 1986; 466():909-18. PubMed ID: 2425684
    [No Abstract]   [Full Text] [Related]  

  • 17. Substructure of sidearms on squid axoplasmic vesicles and microtubules visualized by negative contrast electron microscopy.
    Langford GM; Allen RD; Weiss DG
    Cell Motil Cytoskeleton; 1987; 7(1):20-30. PubMed ID: 2434254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of microtubule-associated proteins from the ovaries of hemipteran insects by MPF and MAP kinase: possible roles in the regulation of microtubules during oogenesis.
    Lane JD; Stebbings H
    Arch Insect Biochem Physiol; 1998; 39(2):81-90. PubMed ID: 9846377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single microtubules from squid axoplasm support bidirectional movement of organelles.
    Schnapp BJ; Vale RD; Sheetz MP; Reese TS
    Cell; 1985 Feb; 40(2):455-62. PubMed ID: 2578325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of mitochondria in the ovarian trophic cord of Dysdercus intermedius (Heteroptera) resembles nerve axonal transport.
    Dittmann F; Weiss DG; Münz A
    Rouxs Arch Dev Biol; 1987 Oct; 196(7):407-413. PubMed ID: 28305388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.