These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35030650)

  • 1. Directed Nanoscale Self-Assembly of Natural Photosystems on Nitrogen-Doped Carbon Nanotubes for Solar-Energy Harvesting.
    Kim I; Jo N; Yang MY; Kim J; Jun H; Lee GY; Shin T; Kim SO; Nam YS
    ACS Appl Bio Mater; 2019 May; 2(5):2109-2115. PubMed ID: 35030650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategic Design of Vacancy-Enriched Fe
    Chen M; Wang GC; Shao LL; Yuan ZY; Qian X; Jing QS; Huang ZY; Xu DL; Yang SX
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31208-31224. PubMed ID: 29999302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic assembly of dendrimer-templated platinum catalysts on nitrogen-doped carbon nanotube electrodes for oxygen reduction.
    Vijayaraghavan G; Stevenson KJ
    Langmuir; 2007 May; 23(10):5279-82. PubMed ID: 17428074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing.
    Sheng Q; Liu R; Zheng J
    Bioelectrochemistry; 2013 Dec; 94():39-46. PubMed ID: 23787095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.
    Wu J; Yadav RM; Liu M; Sharma PP; Tiwary CS; Ma L; Zou X; Zhou XD; Yakobson BI; Lou J; Ajayan PM
    ACS Nano; 2015 May; 9(5):5364-71. PubMed ID: 25897553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen-promoted self-assembly of N-doped carbon nanotubes and their intrinsic catalysis for oxygen reduction in fuel cells.
    Wang Z; Jia R; Zheng J; Zhao J; Li L; Song J; Zhu Z
    ACS Nano; 2011 Mar; 5(3):1677-84. PubMed ID: 21309566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials.
    Lee JM; Kwon BH; Park HI; Kim H; Kim MG; Park JS; Kim ES; Yoo S; Jeon DY; Kim SO
    Adv Mater; 2013 Apr; 25(14):2011-7. PubMed ID: 23315683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron Tunneling Fosters Solar-to-Hydrogen Energy Conversion.
    Yan X; Wang K; Xiao FX
    Inorg Chem; 2023 Oct; 62(42):17454-17463. PubMed ID: 37827854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum quantum dots enhance electrocatalytic activity of bamboo-like nitrogen doped carbon nanotubes embedding Co-MnO nanoparticles for methanol/ethanol oxidation.
    Zhang M; Song Z; Wang Z; Wang A; Zhu G; Shao S
    J Colloid Interface Sci; 2021 May; 590():164-174. PubMed ID: 33548600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion.
    King PW
    Biochim Biophys Acta; 2013; 1827(8-9):949-57. PubMed ID: 23541891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries.
    Xie X; Shang L; Shi R; Waterhouse GIN; Zhao J; Zhang T
    Nanoscale; 2020 Jun; 12(24):13129-13136. PubMed ID: 32584366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amine-Rich Hydrogels for Molecular Nanoarchitectonics of Photosystem II and Inverse Opal TiO
    Bae S; Kim M; Jo N; Kim KM; Lee C; Kwon TH; Nam YS; Ryu J
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16086-16095. PubMed ID: 38506502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of NCNTs Growth on Foamed Nickel and Thus-Prepared PS Hydrogenation High-Performance Carrier NCNTs@FN.
    Yan JY; Cao CY; Cao GP; Pan SF; Lv H; Saeed AMM
    Langmuir; 2024 Apr; 40(13):6786-6805. PubMed ID: 38503426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation.
    Guo D; Yuan H; Wang X; Zhu C; Chen Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9628-9636. PubMed ID: 32020801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose.
    Song Y; Lu X; Li Y; Guo Q; Chen S; Mao L; Hou H; Wang L
    Anal Chem; 2016 Jan; 88(2):1371-7. PubMed ID: 26653076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A ZnO nanowire bio-hybrid solar cell.
    Yaghoubi H; Schaefer M; Yaghoubi S; Jun D; Schlaf R; Beatty JT; Takshi A
    Nanotechnology; 2017 Feb; 28(5):054006. PubMed ID: 28029108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design of Photo-Electrochemical Hybrid Devices Based on Graphene and Chlamydomonas reinhardtii Light-Harvesting Proteins.
    Ortiz-Torres MI; Fernández-Niño M; Cruz JC; Capasso A; Matteocci F; Patiño EJ; Hernández Y; González Barrios AF
    Sci Rep; 2020 Feb; 10(1):3376. PubMed ID: 32099058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.