These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35030735)

  • 21. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Interpenetrated Graphene Foam/58S Bioactive Glass Scaffolds for Electrical-Stimulation-Assisted Differentiation of Rabbit Mesenchymal Stem Cells to Enhance Bone Regeneration.
    Yao Q; Liu H; Lin X; Ma L; Zheng X; Liu Y; Huang P; Yu S; Zhang W; Lin M; Dai L; Liu Y
    J Biomed Nanotechnol; 2019 Mar; 15(3):602-611. PubMed ID: 31165704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creation of a unique architectural structure of bioactive glass sub-micron particles incorporated in a polycaprolactone/gelatin fibrous mat; characterization, bioactivity, and cellular evaluations.
    Fanaee S; Labbaf S; Enayati MH; Baharlou Houreh A; Esfahani MN
    J Biomed Mater Res A; 2019 Jul; 107(7):1358-1365. PubMed ID: 30724467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The polycaprolactone/silk fibroin/carbonate hydroxyapatite electrospun scaffold promotes bone reconstruction by regulating the polarization of macrophages.
    Jia X; Zhou J; Ning J; Li M; Yao Y; Wang X; Jian Y; Zhao K
    Regen Biomater; 2022; 9():rbac035. PubMed ID: 35801011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.
    Fereshteh Z; Nooeaid P; Fathi M; Bagri A; Boccaccini AR
    Data Brief; 2015 Sep; 4():524-8. PubMed ID: 26966716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells.
    Fazeli N; Arefian E; Irani S; Ardeshirylajimi A; Seyedjafari E
    ACS Omega; 2021 Dec; 6(51):35284-35296. PubMed ID: 34984260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Bioprinting of Polycaprolactone-Based Scaffolds for Pulp-Dentin Regeneration: Investigation of Physicochemical and Biological Behavior.
    Mousavi Nejad Z; Zamanian A; Saeidifar M; Vanaei HR; Salar Amoli M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E
    Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration.
    Yu L; Li Y; Zhao K; Tang Y; Cheng Z; Chen J; Zang Y; Wu J; Kong L; Liu S; Lei W; Wu Z
    PLoS One; 2013; 8(4):e62570. PubMed ID: 23638115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells.
    Wang X; Molino BZ; Pitkänen S; Ojansivu M; Xu C; Hannula M; Hyttinen J; Miettinen S; Hupa L; Wallace G
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4496-4510. PubMed ID: 33438415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior.
    Li X; Shi J; Dong X; Zhang L; Zeng H
    J Biomed Mater Res A; 2008 Jan; 84(1):84-91. PubMed ID: 17600329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional polyethylene imine hybrids decorated by silica bioactive glass with enhanced mechanical properties, antibacterial, and osteogenesis for bone repair.
    Aghayan M; Alizadeh P; Keshavarz M
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112534. PubMed ID: 34857311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A; Amin H; Nasr T; Shama A
    Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds.
    Roohani-Esfahani SI; Nouri-Khorasani S; Lu ZF; Appleyard RC; Zreiqat H
    Acta Biomater; 2011 Mar; 7(3):1307-18. PubMed ID: 20971219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histopathological, histomorphometrical, and radiological evaluations of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as cell scaffolds in rat tibia: an in vivo study.
    Seyedmajidi M; Haghanifar S; Hajian-Tilaki K; Seyedmajidi S
    Biomed Mater; 2018 Jan; 13(2):025015. PubMed ID: 29133624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration.
    Junka R; Yu X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.