These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35030825)

  • 1. Fractal microstructure effects on effective gas diffusivity of a nanoporous medium based on pore-scale numerical simulations with lattice Boltzmann method.
    Hu B; Wang JG
    Phys Rev E; 2021 Dec; 104(6-2):065304. PubMed ID: 35030825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures.
    Ma Q; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013025. PubMed ID: 26274287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms.
    Zhou W; Yang X; Liu X
    Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the effective gas diffusivity of a porous composite medium from the three-dimensional reconstruction of its microstructure.
    Berson A; Choi HW; Pharoah JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026310. PubMed ID: 21405909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the dominant transport mechanism in single nanoscale pores and 3D nanoporous media.
    Yin Y; Qu Z; Prodanović M; Landry CJ
    Fundam Res; 2023 May; 3(3):409-421. PubMed ID: 38933770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity.
    Chen L; Zhang L; Kang Q; Viswanathan HS; Yao J; Tao W
    Sci Rep; 2015 Jan; 5():8089. PubMed ID: 25627247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal characteristics of shale pore structure and its influence on seepage flow.
    Wang S; Li X; Xue H; Shen Z; Chen L
    R Soc Open Sci; 2021 May; 8(5):202271. PubMed ID: 34017601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.
    Shen Y; Pang Y; Shen Z; Tian Y; Ge H
    Sci Rep; 2018 Feb; 8(1):2601. PubMed ID: 29422663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Knudsen diffusion coefficients from tracer experiments conducted with a binary gas system and a porous medium.
    Hibi Y; Kashihara A
    J Contam Hydrol; 2018 Mar; 210():65-80. PubMed ID: 29519732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale Lattice Boltzmann Simulation of the Kinetics Process of Methane Desorption-Diffusion in Coal.
    Peng Z; Deng Z; Feng H; Liu S; Li Y
    ACS Omega; 2021 Aug; 6(30):19789-19798. PubMed ID: 34368566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical limitation of pesticides (chlordecone) decontamination in volcanic soils: fractal approach and numerical simulation.
    Woignier T; Rangon L; Clostre F; Mottes C; Cattan P; Primera J; Jannoyer M
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):40980-40991. PubMed ID: 31359312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess-entropy scaling for gas diffusivity in nanoporous materials.
    Liu Y; Fu J; Wu J
    Langmuir; 2013 Oct; 29(42):12997-3002. PubMed ID: 24070337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore Structure and Fractal Characteristics of Lacustrine Shale: Implications for Shale Gas Storage and Production Potential.
    Chen L; Jiang Z; Jiang S; Liu K; Yang W; Tan J; Gao F
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Diffusion in Fibrous Porous Media: A Comparison Study between Lattice Boltzmann and Pore Network Modeling Methods.
    Huang X; Zhou W; Deng D
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling pure gas permeation in nanoporous materials and membranes.
    Bhatia SK
    Langmuir; 2010 Jun; 26(11):8373-85. PubMed ID: 20232828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the surface diffusivity of argon in nanoporous carbon.
    Mi X; Shi Y
    Phys Chem Chem Phys; 2017 Feb; 19(8):5855-5860. PubMed ID: 28176992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann simulation of shale gas transport in organic nano-pores.
    Zhang X; Xiao L; Shan X; Guo L
    Sci Rep; 2014 May; 4():4843. PubMed ID: 24784022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration.
    Chang CJ; Yang CS; Chuang YJ; Khoo HS; Tseng FG
    Nanotechnology; 2008 Sep; 19(36):365301. PubMed ID: 21828866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Model for Coal Gas Diffusion Based on the Fractal Tree-Like Bifurcation Network Structure.
    Han J; Liu Z; Yang H; Zhu M; Lv J
    ACS Omega; 2023 Dec; 8(51):49444-49459. PubMed ID: 38162744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Influence of Shale Storage Space Types on Shale Gas Transport.
    Gao Q; Dong P; Liu C
    ACS Omega; 2021 May; 6(20):12931-12951. PubMed ID: 34056445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.