These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35030948)
1. Enhancing the performance of an open quantum battery via environment engineering. Xu K; Zhu HJ; Zhang GF; Liu WM Phys Rev E; 2021 Dec; 104(6-1):064143. PubMed ID: 35030948 [TBL] [Abstract][Full Text] [Related]
2. Study the charging process of moving quantum batteries inside cavity. Hadipour M; Haseli S; Dolatkhah H; Rashidi M Sci Rep; 2023 Jul; 13(1):10672. PubMed ID: 37393354 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the direct charging performance of an open quantum battery by adjusting its velocity. Mojaveri B; Jafarzadeh Bahrbeig R; Fasihi MA; Babanzadeh S Sci Rep; 2023 Nov; 13(1):19827. PubMed ID: 37964073 [TBL] [Abstract][Full Text] [Related]
4. Stable charging of a Rydberg quantum battery in an open system. Yao Y; Shao XQ Phys Rev E; 2021 Oct; 104(4-1):044116. PubMed ID: 34781510 [TBL] [Abstract][Full Text] [Related]
5. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Yao Y; Shao XQ Phys Rev E; 2022 Jul; 106(1-1):014138. PubMed ID: 35974574 [TBL] [Abstract][Full Text] [Related]
6. Environment-mediated entropic uncertainty in charging quantum batteries. Song ML; Li LJ; Song XK; Ye L; Wang D Phys Rev E; 2022 Nov; 106(5-1):054107. PubMed ID: 36559341 [TBL] [Abstract][Full Text] [Related]
7. Quantum batteries in non-Markovian reservoirs. Li JL; Shen HZ; Yi XX Opt Lett; 2022 Nov; 47(21):5614-5617. PubMed ID: 37219284 [TBL] [Abstract][Full Text] [Related]
8. Enhancing self-discharging process with disordered quantum batteries. Arjmandi MB; Mohammadi H; Santos AC Phys Rev E; 2022 May; 105(5-1):054115. PubMed ID: 35706233 [TBL] [Abstract][Full Text] [Related]
9. Ergotropy from coherences in an open quantum system. Çakmak B Phys Rev E; 2020 Oct; 102(4-1):042111. PubMed ID: 33212727 [TBL] [Abstract][Full Text] [Related]
10. Remote Charging and Degradation Suppression for the Quantum Battery. Song WL; Liu HB; Zhou B; Yang WL; An JH Phys Rev Lett; 2024 Mar; 132(9):090401. PubMed ID: 38489615 [TBL] [Abstract][Full Text] [Related]
12. Bounds on charging power of open quantum batteries. Zakavati S; Tabesh FT; Salimi S Phys Rev E; 2021 Nov; 104(5-1):054117. PubMed ID: 34942849 [TBL] [Abstract][Full Text] [Related]
13. Quantum battery based on dipole-dipole interaction and external driving field. Zhang W; Wang S; Wu C; Wang G Phys Rev E; 2023 May; 107(5-1):054125. PubMed ID: 37329039 [TBL] [Abstract][Full Text] [Related]
14. Collective enhancement in dissipative quantum batteries. Carrasco J; Maze JR; Hermann-Avigliano C; Barra F Phys Rev E; 2022 Jun; 105(6-1):064119. PubMed ID: 35854549 [TBL] [Abstract][Full Text] [Related]
15. Exergy of passive states: Waste energy after ergotropy extraction. Kamin FH; Salimi S; Santos AC Phys Rev E; 2021 Sep; 104(3-1):034134. PubMed ID: 34654149 [TBL] [Abstract][Full Text] [Related]
16. Efficiency Fluctuations in a Quantum Battery Charged by a Repeated Interaction Process. Barra F Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741541 [TBL] [Abstract][Full Text] [Related]
17. Quantum Speed-Up in Collisional Battery Charging. Seah S; Perarnau-Llobet M; Haack G; Brunner N; Nimmrichter S Phys Rev Lett; 2021 Sep; 127(10):100601. PubMed ID: 34533344 [TBL] [Abstract][Full Text] [Related]
18. Lossy Micromaser Battery: Almost Pure States in the Jaynes-Cummings Regime. Shaghaghi V; Singh V; Carrega M; Rosa D; Benenti G Entropy (Basel); 2023 Feb; 25(3):. PubMed ID: 36981319 [TBL] [Abstract][Full Text] [Related]