These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35031089)

  • 1. Comparing Modeling Approaches for Discrete Event Simulations With Competing Risks Based on Censored Individual Patient Data: A Simulation Study and Illustration in Colorectal Cancer.
    Degeling K; IJzerman MJ; Groothuis-Oudshoorn CGM; Franken MD; Koopman M; Clements MS; Koffijberg H
    Value Health; 2022 Jan; 25(1):104-115. PubMed ID: 35031089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Strategies for Modeling Competing Risks in Discrete-Event Simulations: A Simulation Study and Illustration in Colorectal Cancer.
    Degeling K; Koffijberg H; Franken MD; Koopman M; IJzerman MJ
    Med Decis Making; 2019 Jan; 39(1):57-73. PubMed ID: 30799693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementing competing risks in discrete event simulation: the event-specific probabilities and distributions approach.
    Franchini F; Fedyashov V; IJzerman MJ; Degeling K
    Front Pharmacol; 2023; 14():1255021. PubMed ID: 37964874
    [No Abstract]   [Full Text] [Related]  

  • 4. Matching the model with the evidence: comparing discrete event simulation and state-transition modeling for time-to-event predictions in a cost-effectiveness analysis of treatment in metastatic colorectal cancer patients.
    Degeling K; Franken MD; May AM; van Oijen MGH; Koopman M; Punt CJA; IJzerman MJ; Koffijberg H
    Cancer Epidemiol; 2018 Dec; 57():60-67. PubMed ID: 30317148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of Cox regression models for composite time-to-event endpoints with component-wise censoring in randomized trials.
    Speiser JL; Ambrosius WT; Pajewski NM
    Clin Trials; 2023 Oct; 20(5):507-516. PubMed ID: 37243355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of censoring in competing risks analysis of the subdistribution hazard.
    Donoghoe MW; Gebski V
    BMC Med Res Methodol; 2017 Apr; 17(1):52. PubMed ID: 28376736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach.
    Behning C; Bigerl A; Wright MN; Sekula P; Berger M; Schmid M
    Biom J; 2024 Sep; 66(6):e202400014. PubMed ID: 39162087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models.
    Degeling K; IJzerman MJ; Koopman M; Koffijberg H
    BMC Med Res Methodol; 2017 Dec; 17(1):170. PubMed ID: 29246192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regression models for interval censored data using parametric pseudo-observations.
    Johansen MN; Lundbye-Christensen S; Larsen JM; Parner ET
    BMC Med Res Methodol; 2021 Feb; 21(1):36. PubMed ID: 33588771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marginal estimation for multi-stage models: waiting time distributions and competing risks analyses.
    Satten GA; Datta S
    Stat Med; 2002 Jan; 21(1):3-19. PubMed ID: 11782047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Additive-multiplicative hazards regression models for interval-censored semi-competing risks data with missing intermediate events.
    Kim J; Kim J; Kim SW
    BMC Med Res Methodol; 2019 Mar; 19(1):49. PubMed ID: 30841923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiparametric competing risks regression under interval censoring using the R package intccr.
    Park J; Bakoyannis G; Yiannoutsos CT
    Comput Methods Programs Biomed; 2019 May; 173():167-176. PubMed ID: 31046992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A note on competing risks in survival data analysis.
    Satagopan JM; Ben-Porat L; Berwick M; Robson M; Kutler D; Auerbach AD
    Br J Cancer; 2004 Oct; 91(7):1229-35. PubMed ID: 15305188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Censoring for Loss to Follow-up in Time-to-event Analyses of Composite Outcomes or in the Presence of Competing Risks.
    Lesko CR; Edwards JK; Moore RD; Lau B
    Epidemiology; 2019 Nov; 30(6):817-824. PubMed ID: 31393316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional score approaches to errors-in-variables competing risks data in discrete time.
    Wen CC; Chen YH
    Stat Med; 2024 Aug; 43(18):3503-3523. PubMed ID: 38857600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of semi-competing risks by means of first passage times of a stochastic process.
    Sildnes B; Lindqvist BH
    Lifetime Data Anal; 2018 Jan; 24(1):153-175. PubMed ID: 28733753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model selection in competing risks regression.
    Kuk D; Varadhan R
    Stat Med; 2013 Aug; 32(18):3077-88. PubMed ID: 23436643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects.
    Blanche PF; Holt A; Scheike T
    Lifetime Data Anal; 2023 Apr; 29(2):441-482. PubMed ID: 35799026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regression modeling of restricted mean survival time for left-truncated right-censored data.
    Rong R; Ning J; Zhu H
    Stat Med; 2022 Jul; 41(16):3003-3021. PubMed ID: 35708238
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.