BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35031313)

  • 1. SpyTag/Catcher chemistry induces the formation of active inclusion bodies in E. coli.
    Dong W; Sun H; Chen Q; Hou L; Chang Y; Luo H
    Int J Biol Macromol; 2022 Feb; 199():358-371. PubMed ID: 35031313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Linked Enzyme Aggregates for Applications in Aqueous and Nonaqueous Media.
    Roy I; Mukherjee J; Gupta MN
    Methods Mol Biol; 2017; 1504():109-123. PubMed ID: 27770417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix.
    Doraiswamy N; Sarathi M; Pennathur G
    Prep Biochem Biotechnol; 2019; 49(3):270-278. PubMed ID: 30794034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry.
    Ölçücü G; Baumer B; Küsters K; Möllenhoff K; Oldiges M; Pietruszka J; Jaeger KE; Krauss U
    ACS Synth Biol; 2022 May; 11(5):1881-1896. PubMed ID: 35500299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application.
    Chen Z; Wang Y; Liu W; Wang J; Chen H
    Int J Biol Macromol; 2017 Feb; 95():650-657. PubMed ID: 27913224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.
    Rehman S; Bhatti HN; Bilal M; Asgher M
    Int J Biol Macromol; 2016 Oct; 91():1161-9. PubMed ID: 27365121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and stability of cross linked nitrilase aggregates (nitrilase-CLEAs) for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid.
    Khatik AG; Jain AK; Muley AB
    Bioprocess Biosyst Eng; 2022 Sep; 45(9):1559-1579. PubMed ID: 35962826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates.
    Voběrková S; Solčány V; Vršanská M; Adam V
    Chemosphere; 2018 Jul; 202():694-707. PubMed ID: 29602102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the properties of (catalytically)-active inclusion bodies.
    Jäger VD; Kloss R; Grünberger A; Seide S; Hahn D; Karmainski T; Piqueray M; Embruch J; Longerich S; Mackfeld U; Jaeger KE; Wiechert W; Pohl M; Krauss U
    Microb Cell Fact; 2019 Feb; 18(1):33. PubMed ID: 30732596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme stabilization via cross-linked enzyme aggregates.
    Gupta MN; Raghava S
    Methods Mol Biol; 2011; 679():133-45. PubMed ID: 20865393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine.
    Krauss U; Jäger VD; Diener M; Pohl M; Jaeger KE
    J Biotechnol; 2017 Sep; 258():136-147. PubMed ID: 28465211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, Production, and Characterization of Catalytically Active Inclusion Bodies.
    Ölçücü G; Jaeger KE; Krauss U
    Methods Mol Biol; 2023; 2617():49-74. PubMed ID: 36656516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression of the recombined alcohol dehydrogenase and glucose dehydrogenase and cross-linked enzyme aggregates stabilization.
    Hu X; Liu L; Chen D; Wang Y; Zhang J; Shao L
    Bioresour Technol; 2017 Jan; 224():531-535. PubMed ID: 27838320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the production, activity, and stability of CLEAs with diepoxides.
    Hernández-García S; García-García MI; García-Carmona F
    Biotechnol Prog; 2017 Sep; 33(5):1425-1429. PubMed ID: 28556517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of cross linked enzyme aggregates of serine hydroxyl methyltransferase from Idiomerina leihiensis.
    Kumar A; Wu G; Liu Z
    Int J Biol Macromol; 2018 Oct; 117():683-690. PubMed ID: 29694840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker.
    Hong J; Jung D; Park S; Oh Y; Oh KK; Lee SH
    Int J Biol Macromol; 2021 Feb; 169():541-550. PubMed ID: 33358952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving stability and activity of cross-linked enzyme aggregates based on polyethylenimine in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids.
    Yan J; Gui X; Wang G; Yan Y
    Appl Biochem Biotechnol; 2012 Feb; 166(4):925-32. PubMed ID: 22167690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-aggregation of laccase and nature egg white: a simple method to prepare stable and recyclable biocatalyst.
    Jiang Y; Wang Q; He Y; Zhou L; Gao J
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2496-506. PubMed ID: 24398920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in biochemical characteristics of cross-linked enzyme aggregates (CLEAs) with magnetic nanoparticles as support matrix.
    Doraiswamy N; Sarathi M; Pennathur G
    Methods Enzymol; 2020; 630():133-158. PubMed ID: 31931983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil.
    Muley AB; Awasthi S; Bhalerao PP; Jadhav NL; Singhal RS
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1383-1404. PubMed ID: 33660099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.