These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35031344)

  • 1. A novel 5D brain parcellation approach based on spatio-temporal encoding of resting fMRI data from deep residual learning.
    Kazemivash B; Calhoun VD
    J Neurosci Methods; 2022 Mar; 369():109478. PubMed ID: 35031344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing functional brain networks via Spatio-Temporal Attention 4D Convolutional Neural Networks (STA-4DCNNs).
    Jiang X; Yan J; Zhao Y; Jiang M; Chen Y; Zhou J; Xiao Z; Wang Z; Zhang R; Becker B; Zhu D; Kendrick KM; Liu T
    Neural Netw; 2023 Jan; 158():99-110. PubMed ID: 36446159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling spatio-temporal patterns of holistic functional brain networks via multi-head guided attention graph neural networks (Multi-Head GAGNNs).
    Yan J; Chen Y; Xiao Z; Zhang S; Jiang M; Wang T; Zhang T; Lv J; Becker B; Zhang R; Zhu D; Han J; Yao D; Kendrick KM; Liu T; Jiang X
    Med Image Anal; 2022 Aug; 80():102518. PubMed ID: 35749981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dyconnmap: Dynamic connectome mapping-A neuroimaging python module.
    Marimpis AD; Dimitriadis SI; Goebel R
    Hum Brain Mapp; 2021 Oct; 42(15):4909-4939. PubMed ID: 34250674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.
    Fan L; Zhong Q; Qin J; Li N; Su J; Zeng LL; Hu D; Shen H
    Hum Brain Mapp; 2021 Apr; 42(5):1416-1433. PubMed ID: 33283954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep residual model for characterization of 5D spatiotemporal network dynamics reveals widespread spatiodynamic changes in schizophrenia.
    Kazemivash B; van Erp TGM; Kochunov P; Calhoun VD
    Front Neuroimaging; 2023; 2():1097523. PubMed ID: 37554628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 5D approach to study spatio-temporal dynamism of resting-state brain networks in schizophrenia.
    Kazemivash B; Calhoun VD
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3737-3740. PubMed ID: 36085717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
    Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; LiĆ² P; Toschi N
    Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4D Modeling of fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNN).
    Zhao Y; Li X; Huang H; Zhang W; Zhao S; Makkie M; Zhang M; Li Q; Liu T
    IEEE Trans Cogn Dev Syst; 2020 Sep; 12(3):451-460. PubMed ID: 33748420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
    Bryce NV; Flournoy JC; Guassi Moreira JF; Rosen ML; Sambook KA; Mair P; McLaughlin KA
    Neuroimage; 2021 Nov; 243():118487. PubMed ID: 34419594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.
    Hu Y; Li X; Wang L; Han B; Nie S
    Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis.
    Cao P; Wen G; Liu X; Yang J; Zaiane OR
    Med Biol Eng Comput; 2022 Jul; 60(7):1897-1913. PubMed ID: 35522357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems.
    Griffa A; Ricaud B; Benzi K; Bresson X; Daducci A; Vandergheynst P; Thiran JP; Hagmann P
    Neuroimage; 2017 Jul; 155():490-502. PubMed ID: 28412440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking spatial dynamics of functional connectivity during a task.
    Wu L; Caprihan A; Calhoun V
    Neuroimage; 2021 Oct; 239():118310. PubMed ID: 34175424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Reliability of Individual Brain Activity Networks.
    Cassidy B; Bowman FD; Rae C; Solo V
    IEEE Trans Med Imaging; 2018 Feb; 37(2):649-662. PubMed ID: 29408792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism.
    Aggarwal P; Gupta A
    Med Image Anal; 2019 Aug; 56():11-25. PubMed ID: 31150935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.