These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35031380)

  • 21. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production.
    Cui X; Lu M; Khan MB; Lai C; Yang X; He Z; Chen G; Yan B
    Waste Manag; 2020 Feb; 102():106-113. PubMed ID: 31670228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical, structural analysis of coal discards (and sewage sludge) (co)-HTC derived biochar for a sustainable carbon economy and evaluation of the liquid by-product.
    Kahilu GM; Bada S; Mulopo J
    Sci Rep; 2022 Oct; 12(1):17532. PubMed ID: 36266312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion.
    Shi Y; Chen Z; Cao Y; Fan J; Clark JH; Luo G; Zhang S
    J Hazard Mater; 2021 Feb; 403():123649. PubMed ID: 32823030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge.
    Wang Q; Zhang C; Patel D; Jung H; Liu P; Wan B; Pavlostathis SG; Tang Y
    Environ Sci Technol; 2020 Jul; 54(13):8362-8372. PubMed ID: 32539353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrothermal carbonization of digested sewage sludge: The fate of heavy metals, PAHs, PCBs, dioxins and pesticides.
    Tasca AL; Vitolo S; Gori R; Mannarino G; Raspolli Galletti AM; Puccini M
    Chemosphere; 2022 Nov; 307(Pt 3):135997. PubMed ID: 35987266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A synergistic combination of nutrient reclamation from manure and resultant hydrochar upgradation by acid-supported hydrothermal carbonization.
    Dai L; Yang B; Li H; Tan F; Zhu N; Zhu Q; He M; Ran Y; Hu G
    Bioresour Technol; 2017 Nov; 243():860-866. PubMed ID: 28732407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges.
    Huang R; Tang Y; Luo L
    Waste Manag; 2021 Feb; 121():276-285. PubMed ID: 33388650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar.
    Malhotra M; Garg A
    Waste Manag; 2020 Nov; 117():114-123. PubMed ID: 32823076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior.
    He C; Zhang Z; Ge C; Liu W; Tang Y; Zhuang X; Qiu R
    Waste Manag; 2019 Dec; 100():171-181. PubMed ID: 31541922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Co-hydrothermal carbonization of pine residual sawdust and non-dewatered sewage sludge - effect of reaction conditions on hydrochar characteristics.
    Cavali M; Benbelkacem H; Kim B; Bayard R; Libardi Junior N; Gonzaga Domingos D; Woiciechowski AL; Castilhos Junior AB
    J Environ Manage; 2023 Aug; 340():117994. PubMed ID: 37119630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance.
    Steckenmesser D; Vogel C; Adam C; Steffens D
    Waste Manag; 2017 Apr; 62():194-203. PubMed ID: 28242174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and properties of hydrochars from macadamia nut shell via hydrothermal carbonization.
    Fan F; Yang Z; Li H; Shi Z; Kan H
    R Soc Open Sci; 2018 Oct; 5(10):181126. PubMed ID: 30473856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization.
    Chu Q; Xue L; Singh BP; Yu S; Müller K; Wang H; Feng Y; Pan G; Zheng X; Yang L
    Chemosphere; 2020 Apr; 245():125558. PubMed ID: 31855761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge.
    Huang R; Tang Y
    Environ Sci Technol; 2015 Dec; 49(24):14466-74. PubMed ID: 26633236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate.
    Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T
    J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges.
    Huang R; Zhang B; Saad EM; Ingall ED; Tang Y
    Water Res; 2018 Apr; 132():260-269. PubMed ID: 29331913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications.
    Tasca AL; Puccini M; Gori R; Corsi I; Galletti AMR; Vitolo S
    Waste Manag; 2019 Jun; 93():1-13. PubMed ID: 31235045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal carbonization of biomass from landscape management - Influence of process parameters on soil properties of hydrochars.
    Röhrdanz M; Rebling T; Ohlert J; Jasper J; Greve T; Buchwald R; von Frieling P; Wark M
    J Environ Manage; 2016 May; 173():72-8. PubMed ID: 26974240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of Macro and Micro-Nutrients by Hydrothermal Carbonization of Septage.
    McGaughy K; Reza MT
    J Agric Food Chem; 2018 Feb; 66(8):1854-1862. PubMed ID: 29378396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting relative agronomic efficiency of phosphorus-rich organic residues.
    Ylivainio K; Lehti A; Jermakka J; Wikberg H; Turtola E
    Sci Total Environ; 2021 Jun; 773():145618. PubMed ID: 33592461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.