These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35031486)

  • 1. AAPred-CNN: Accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides.
    Lin C; Wang L; Shi L
    Methods; 2022 Aug; 204():442-448. PubMed ID: 35031486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review and Comparative Analysis of Machine Learning-based Predictors for Predicting and Analyzing Anti-angiogenic Peptides.
    Charoenkwan P; Chiangjong W; Hasan MM; Nantasenamat C; Shoombuatong W
    Curr Med Chem; 2022; 29(5):849-864. PubMed ID: 34375178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity.
    Li G; Iyer B; Prasath VBS; Ni Y; Salomonis N
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction.
    Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y
    BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid encoding for deep learning applications.
    ElAbd H; Bromberg Y; Hoarfrost A; Lenz T; Franke A; Wendorff M
    BMC Bioinformatics; 2020 Jun; 21(1):235. PubMed ID: 32517697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data.
    Hanczar B; Bourgeais V; Zehraoui F
    BMC Bioinformatics; 2022 Jul; 23(1):262. PubMed ID: 35786378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and deep learning enabled fuel sooting tendency prediction from molecular structure.
    Li R; Herreros JM; Tsolakis A; Yang W
    J Mol Graph Model; 2022 Mar; 111():108083. PubMed ID: 34837786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-AGP: Prediction of angiogenic protein by integrating two-dimensional convolutional neural network with discrete cosine transform.
    Ali F; Alghamdi W; Almagrabi AO; Alghushairy O; Banjar A; Khalid M
    Int J Biol Macromol; 2023 Jul; 243():125296. PubMed ID: 37301349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.