These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35031981)

  • 1. An Accelerated Thrombosis Model for Computational Fluid Dynamics Simulations in Rotary Blood Pumps.
    Blum C; Groß-Hardt S; Steinseifer U; Neidlin M
    Cardiovasc Eng Technol; 2022 Aug; 13(4):638-649. PubMed ID: 35031981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational characterization of flow and blood damage potential of the new maglev CH-VAD pump versus the HVAD and HeartMate II pumps.
    Zhang J; Chen Z; Griffith BP; Wu ZJ
    Int J Artif Organs; 2020 Oct; 43(10):653-662. PubMed ID: 32043405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of the Frequency, Severity, and Propagation of Thrombi in the HeartMate II Left Ventricular Assist Device.
    Rowlands GW; Pagani FD; Antaki JF
    ASAIO J; 2020; 66(9):992-999. PubMed ID: 32243265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a computational model for macroscopic predictions of device-induced thrombosis.
    Taylor JO; Meyer RS; Deutsch S; Manning KB
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1713-1731. PubMed ID: 27169403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-constituent model for assessing the effect of impeller shroud on the thrombosis potential of a centrifugal blood pump.
    Lv S; He ZP; Liu GM; Hu SS
    Int J Artif Organs; 2024 Apr; 47(4):269-279. PubMed ID: 38506302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fidelity computational simulation of thrombus formation in Thoratec HeartMate II continuous flow ventricular assist device.
    Wu WT; Yang F; Wu J; Aubry N; Massoudi M; Antaki JF
    Sci Rep; 2016 Dec; 6():38025. PubMed ID: 27905492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrombus formation patterns in the HeartMate II ventricular assist device: clinical observations can be predicted by numerical simulations.
    Chiu WC; Slepian MJ; Bluestein D
    ASAIO J; 2014; 60(2):237-40. PubMed ID: 24399065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization design of semi-open impeller based on thrombogenicity in a blood pump.
    Liu X; Shao J; Wang P; Zhao H; Liu L; Han Q
    Artif Organs; 2024 Sep; 48(9):1060-1069. PubMed ID: 38922991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices.
    Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y
    Bioengineering (Basel); 2022 May; 9(6):. PubMed ID: 35735478
    [No Abstract]   [Full Text] [Related]  

  • 11. Continuum modeling of thrombus formation and growth under different shear rates.
    Rezaeimoghaddam M; van de Vosse FN
    J Biomech; 2022 Feb; 132():110915. PubMed ID: 35032838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refining a numerical model for device-induced thrombosis and investigating the effects of non-Newtonian blood models.
    Yang L; Tobin N; Manning KB
    J Biomech; 2021 May; 120():110393. PubMed ID: 33784516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the influence of a bearing/shaft structure in an axial blood pump on the potential for device thrombosis.
    Liu GM; Jin DH; Chen HB; Hou JF; Zhang Y; Sun HS; Zhou JY; Hu SS; Gui XM
    Int J Artif Organs; 2019 Apr; 42(4):182-189. PubMed ID: 30630379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platelet deposition estimation: A novel method for emulating the pump thrombosis potential of blood pumps.
    Liu GM; Zhang Y; Chen HB; Hou JF; Jin DH; Gui XM; Hu SS
    Artif Organs; 2020 May; 44(5):465-472. PubMed ID: 31853998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Observation of Thrombus Growth Process in an Impeller of a Hydrodynamically Levitated Centrifugal Blood Pump by Near-Infrared Hyperspectral Imaging.
    Sakota D; Murashige T; Kosaka R; Fujiwara T; Nishida M; Maruyama O
    Artif Organs; 2015 Aug; 39(8):714-9. PubMed ID: 26234451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational simulation of platelet interactions in the initiation of stent thrombosis due to stent malapposition.
    Chesnutt JK; Han HC
    Phys Biol; 2016 Jan; 13(1):016001. PubMed ID: 26790093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Device-induced platelet dysfunction in mechanically assisted circulation increases the risks of thrombosis and bleeding.
    Chen Z; Zhang J; Kareem K; Tran D; Conway RG; Arias K; Griffith BP; Wu ZJ
    Artif Organs; 2019 Aug; 43(8):745-755. PubMed ID: 30805954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear stress evaluation on blood cells using computational fluid dynamics.
    Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I
    Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platelet adhesion emulation: A novel method for estimating the device thrombosis potential of a ventricular assist device.
    Liu GM; Chen HB; Hou JF; Zhang Y; Hu SS
    Int J Artif Organs; 2020 Apr; 43(4):252-257. PubMed ID: 31709882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis.
    Liao S; Wu EL; Neidlin M; Li Z; Simpson B; Gregory SD
    Artif Organs; 2018 Oct; 42(10):943-953. PubMed ID: 30260033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.