BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35031998)

  • 1. Prediction of groundwater drawdown using artificial neural networks.
    Gholami V; Sahour H
    Environ Sci Pollut Res Int; 2022 May; 29(22):33544-33557. PubMed ID: 35031998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of machine learning algorithms for groundwater quality modeling.
    Sahour S; Khanbeyki M; Gholami V; Sahour H; Kahvazade I; Karimi H
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46004-46021. PubMed ID: 36715809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of pumping induced flow in observation wells during aquifer testing.
    Székely F
    Ground Water; 2013; 51(5):762-7. PubMed ID: 23198759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration.
    Band SS; Janizadeh S; Pal SC; Chowdhuri I; Siabi Z; Norouzi A; Melesse AM; Shokri M; Mosavi A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33053663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-Screened Vertical Circulation Wells for Groundwater Lowering in Unconfined Aquifers.
    Jin Y; Holzbecher E; Sauter M
    Ground Water; 2016 Jan; 54(1):15-22. PubMed ID: 25801278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide.
    Taheri K; Missimer TM; Amini V; Bahrami J; Omidipour R
    Environ Monit Assess; 2020 Oct; 192(11):684. PubMed ID: 33026519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unusual and large drawdown response of buried-valley aquifers to pumping.
    van der Kamp G; Maathuis H
    Ground Water; 2012; 50(2):207-15. PubMed ID: 21671937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An analytical method to determine ground water supply well network designs.
    MacMillan GJ
    Ground Water; 2009; 47(6):822-7. PubMed ID: 19682093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretation of Pumping Tests in Heterogeneous Aquifers with Constant Head Boundary.
    Pechstein A; Copty NK
    Ground Water; 2021 Jul; 59(4):517-523. PubMed ID: 33389747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Solution for Confined-Unconfined Flow Toward a Fully Penetrating Well in a Confined Aquifer.
    Xiao L; Ye M; Xu Y
    Ground Water; 2018 Nov; 56(6):959-968. PubMed ID: 29417577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility.
    Arabameri A; Saha S; Roy J; Tiefenbacher JP; Cerda A; Biggs T; Pradhan B; Thi Ngo PT; Collins AL
    Sci Total Environ; 2020 Jul; 726():138595. PubMed ID: 32320885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Undetected Barriers on Groundwater Drawdown and Recovery.
    Marshall SK; Cook PG; Miller AD; Simmons CT; Dogramaci S
    Ground Water; 2019 Sep; 57(5):718-726. PubMed ID: 30614521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of aquifer groundwater level based on spatial clustering approach using machine learning.
    Kardan Moghaddam H; Ghordoyee Milan S; Kayhomayoon Z; Rahimzadeh Kivi Z; Arya Azar N
    Environ Monit Assess; 2021 Mar; 193(4):173. PubMed ID: 33687571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer).
    Vadiati M; Rajabi Yami Z; Eskandari E; Nakhaei M; Kisi O
    Environ Monit Assess; 2022 Jul; 194(9):619. PubMed ID: 35904687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: a case study of the Dammam aquifer (middle of Iraq).
    Al-Mayahi HM; Al-Abadi AM; Fryar AE
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13736-13751. PubMed ID: 33196994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UAV-borne LiDAR revolutionizing groundwater level mapping.
    García-López S; Vélez-Nicolás M; Zarandona-Palacio P; Curcio AC; Ruiz-Ortiz V; Barbero L
    Sci Total Environ; 2023 Feb; 859(Pt 1):160272. PubMed ID: 36403836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating changes in radionuclide concentrations and groundwater levels before and after the cooling pond drawdown in the Chornobyl Nuclear Power Plant vicinity.
    Sato H; Gusyev M; Veremenko D; Laptev G; Shibasaki N; Onda Y; Zheleznyak M; Kirieiev S; Nanba K
    Sci Total Environ; 2023 May; 872():161997. PubMed ID: 36739017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study-Shabestar Plain, Iran.
    Jeihouni E; Mohammadi M; Eslamian S; Zareian MJ
    Environ Monit Assess; 2019 Sep; 191(10):620. PubMed ID: 31493149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved characterization of small "u" for Jacob pumping test analysis methods.
    Alexander SC; Saar MO
    Ground Water; 2012; 50(2):256-65. PubMed ID: 21745205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis of ANN Prediction for Groundwater Level Considering Regional-Specific Influence Components.
    Kim I; Lee J
    Ground Water; 2022 May; 60(3):344-361. PubMed ID: 34873680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.