These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 35032027)
21. Improved sieving coefficient in perfusion cell culture with reduced effective filtration length of hollow fibers. Vu J; Gadberry JA; Coffman J; Lee K Biotechnol Prog; 2024; 40(5):e3472. PubMed ID: 38655754 [TBL] [Abstract][Full Text] [Related]
22. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures. Popova D; Stonier A; Pain D; Titchener-Hooker NJ; Farid SS Biotechnol J; 2016 Jul; 11(7):899-909. PubMed ID: 27067803 [TBL] [Abstract][Full Text] [Related]
23. Ultra scale-down approaches for clarification of mammalian cell culture broths in disc-stack centrifuges. Zaman F; Allan CM; Ho SV Biotechnol Prog; 2009; 25(6):1709-16. PubMed ID: 19768799 [TBL] [Abstract][Full Text] [Related]
24. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification. Yigzaw Y; Piper R; Tran M; Shukla AA Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522 [TBL] [Abstract][Full Text] [Related]
25. Comparison of host cell protein removal by depth filters with diatomaceous earth and synthetic silica filter aids using model proteins. Chu LK; Borujeni EE; Xu X; Ghose S; Zydney AL Biotechnol Bioeng; 2023 Jul; 120(7):1882-1890. PubMed ID: 36929487 [TBL] [Abstract][Full Text] [Related]
26. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE Bioreactor™-part II: Applications for antibody production and cryopreservation. Clincke MF; Mölleryd C; Samani PK; Lindskog E; Fäldt E; Walsh K; Chotteau V Biotechnol Prog; 2013; 29(3):768-77. PubMed ID: 23436783 [TBL] [Abstract][Full Text] [Related]
27. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells. Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279 [TBL] [Abstract][Full Text] [Related]
28. Leveraging mathematical models for optimizing filter utility at manufacturing scale. Rose S; Dhingra A; Joseph A; Coffman J Biotechnol Bioeng; 2023 Jun; 120(6):1584-1591. PubMed ID: 36920041 [TBL] [Abstract][Full Text] [Related]
29. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results. Bordag N; Janakiraman V; Nachtigall J; González Maldonado S; Bethan B; Laine JP; Fux E PLoS One; 2016; 11(7):e0159389. PubMed ID: 27438065 [TBL] [Abstract][Full Text] [Related]
30. Impacts on product quality attributes of monoclonal antibodies produced in CHO cell bioreactor cultures during intentional mycoplasma contamination events. Fratz-Berilla EJ; Angart P; Graham RJ; Powers DN; Mohammad A; Kohnhorst C; Faison T; Velugula-Yellela SR; Trunfio N; Agarabi C Biotechnol Bioeng; 2020 Sep; 117(9):2802-2815. PubMed ID: 32436993 [TBL] [Abstract][Full Text] [Related]
31. CFD-aided cell settler design optimization and scale-up: effect of geometric design and operational variables on separation performance. Shen Y; Yanagimachi K Biotechnol Prog; 2011; 27(5):1282-96. PubMed ID: 21618723 [TBL] [Abstract][Full Text] [Related]
32. Improved HCP Reduction Using a New, All-Synthetic Depth Filtration Media Within an Antibody Purification Process. Nguyen HC; Langland AL; Amara JP; Dullen M; Kahn DS; Costanzo JA Biotechnol J; 2019 Jan; 14(1):e1700771. PubMed ID: 29710434 [TBL] [Abstract][Full Text] [Related]
33. Scale-up of controlled-shear affinity filtration using computational fluid dynamics. Francis P; Haynes CA Biotechnol J; 2009 May; 4(5):665-73. PubMed ID: 19452478 [TBL] [Abstract][Full Text] [Related]
34. A CFD model for predicting protein aggregation in low-pH virial inactivation for mAb production. Xing Z; Jin W; Xu X; Song Y; Huang C; Borys MC; Ghose S; Li ZJ Biotechnol Bioeng; 2020 Nov; 117(11):3400-3412. PubMed ID: 32672835 [TBL] [Abstract][Full Text] [Related]
35. Clarification of yeast cell suspensions by depth filtration. Chandler MA; Zydney AL Biotechnol Prog; 2005; 21(5):1552-7. PubMed ID: 16209561 [TBL] [Abstract][Full Text] [Related]
36. Rotating cylindrical filters used in perfusion cultures: CFD simulations and experiments. Figueredo-Cardero A; Martínez E; Chico E; Castilho LR; Medronho RA Biotechnol Prog; 2014; 30(5):1093-102. PubMed ID: 25059206 [TBL] [Abstract][Full Text] [Related]
37. An automated laboratory-scale methodology for the generation of sheared mammalian cell culture samples. Joseph A; Goldrick S; Mollet M; Turner R; Bender J; Gruber D; Farid SS; Titchener-Hooker N Biotechnol J; 2017 May; 12(5):. PubMed ID: 28233468 [TBL] [Abstract][Full Text] [Related]
38. Control of antibody high and low molecular weight species by depth filtration-based cell culture harvesting. Yu D; Mayani M; Song Y; Xing Z; Ghose S; Li ZJ Biotechnol Bioeng; 2019 Oct; 116(10):2610-2620. PubMed ID: 31184373 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing. Folmsbee M PDA J Pharm Sci Technol; 2015; 69(2):307-16. PubMed ID: 25868996 [TBL] [Abstract][Full Text] [Related]
40. Contributions of depth filter components to protein adsorption in bioprocessing. Khanal O; Singh N; Traylor SJ; Xu X; Ghose S; Li ZJ; Lenhoff AM Biotechnol Bioeng; 2018 Aug; 115(8):1938-1948. PubMed ID: 29663326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]