These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 35032105)
1. Pancake Jumping of Sessile Droplets. Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105 [TBL] [Abstract][Full Text] [Related]
2. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790 [TBL] [Abstract][Full Text] [Related]
3. Vibration-Induced Pancake Bouncing of Impacting Droplets on Hydrophobic Surfaces. Ren H; Hu X; Wang J; Li N; Chen L Langmuir; 2024 Oct; 40(42):22338-22345. PubMed ID: 39380129 [TBL] [Abstract][Full Text] [Related]
4. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity. Guo C; Liu L; Yang R; Lu J; Liu S Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938 [TBL] [Abstract][Full Text] [Related]
5. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Preston DJ; Enright R; Wang EN ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667 [TBL] [Abstract][Full Text] [Related]
6. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
7. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State. Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures. Zhang P; Maeda Y; Lv F; Takata Y; Orejon D ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681 [TBL] [Abstract][Full Text] [Related]
9. Superhydrophobic porous networks for enhanced droplet shedding. Liu Y; Wang Z Sci Rep; 2016 Sep; 6():33817. PubMed ID: 27644452 [TBL] [Abstract][Full Text] [Related]
10. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing. Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139 [TBL] [Abstract][Full Text] [Related]
11. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets. Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923 [TBL] [Abstract][Full Text] [Related]
12. Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array. Lee SH; Seong M; Kwak MK; Ko H; Kang M; Park HW; Kang SM; Jeong HE ACS Nano; 2018 Nov; 12(11):10693-10702. PubMed ID: 30248255 [TBL] [Abstract][Full Text] [Related]
13. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves. Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802 [TBL] [Abstract][Full Text] [Related]
14. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface. Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z Small; 2023 Oct; ():e2304635. PubMed ID: 37786271 [TBL] [Abstract][Full Text] [Related]
15. How coalescing droplets jump. Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic charging of jumping droplets. Miljkovic N; Preston DJ; Enright R; Wang EN Nat Commun; 2013; 4():2517. PubMed ID: 24071721 [TBL] [Abstract][Full Text] [Related]
17. How Superhydrophobic Grooves Drive Single-Droplet Jumping. Chu F; Yan X; Miljkovic N Langmuir; 2022 Apr; 38(14):4452-4460. PubMed ID: 35348343 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Jumping-Droplet Departure. Kim MK; Cha H; Birbarah P; Chavan S; Zhong C; Xu Y; Miljkovic N Langmuir; 2015 Dec; 31(49):13452-66. PubMed ID: 26571384 [TBL] [Abstract][Full Text] [Related]
19. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces. Birbarah P; Li Z; Pauls A; Miljkovic N Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977 [TBL] [Abstract][Full Text] [Related]
20. Low-Pressure Pancake Bouncing on Superhydrophobic Surfaces. Fu Z; Jin H; Zhang J; Xue T; Guo Q; Yao G; Gao H; Wang Z; Wen D Small; 2024 Aug; 20(31):e2310200. PubMed ID: 38497491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]