These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 35032193)
1. Automatic detection and segmentation of morphological changes of the maxillary sinus mucosa on cone-beam computed tomography images using a three-dimensional convolutional neural network. Hung KF; Ai QYH; King AD; Bornstein MM; Wong LM; Leung YY Clin Oral Investig; 2022 May; 26(5):3987-3998. PubMed ID: 35032193 [TBL] [Abstract][Full Text] [Related]
2. Convolutional neural network for automatic maxillary sinus segmentation on cone-beam computed tomographic images. Morgan N; Van Gerven A; Smolders A; de Faria Vasconcelos K; Willems H; Jacobs R Sci Rep; 2022 May; 12(1):7523. PubMed ID: 35525857 [TBL] [Abstract][Full Text] [Related]
3. Frequency, location, and association with dental pathology of mucous retention cysts in the maxillary sinus. A radiographic study using cone beam computed tomography (CBCT). Yeung AWK; Tanaka R; Khong PL; von Arx T; Bornstein MM Clin Oral Investig; 2018 Apr; 22(3):1175-1183. PubMed ID: 28920140 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence system for automatic maxillary sinus segmentation on cone beam computed tomography images. Bayrakdar IS; Elfayome NS; Hussien RA; Gulsen IT; Kuran A; Gunes I; Al-Badr A; Celik O; Orhan K Dentomaxillofac Radiol; 2024 Apr; 53(4):256-266. PubMed ID: 38502963 [TBL] [Abstract][Full Text] [Related]
5. Automatic maxillary sinus segmentation and pathology classification on cone-beam computed tomographic images using deep learning. Altun O; Özen DÇ; Duman ŞB; Dedeoğlu N; Bayrakdar İŞ; Eşer G; Çelik Ö; Sümbüllü MA; Syed AZ BMC Oral Health; 2024 Oct; 24(1):1208. PubMed ID: 39390490 [TBL] [Abstract][Full Text] [Related]
6. [Automated system of the determination of maxillary sinus morphometric parameters]. Kabak SL; Karapetyan GM; Melnichenko YM; Savrasova NA; Kosik II Vestn Otorinolaringol; 2021; 86(2):49-53. PubMed ID: 33929152 [TBL] [Abstract][Full Text] [Related]
7. Full virtual patient generated by artificial intelligence-driven integrated segmentation of craniomaxillofacial structures from CBCT images. Nogueira-Reis F; Morgan N; Suryani IR; Tabchoury CPM; Jacobs R J Dent; 2024 Feb; 141():104829. PubMed ID: 38163456 [TBL] [Abstract][Full Text] [Related]
8. Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images. Choi H; Jeon KJ; Kim YH; Ha EG; Lee C; Han SS Sci Rep; 2022 Aug; 12(1):14009. PubMed ID: 35978086 [TBL] [Abstract][Full Text] [Related]
11. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172 [TBL] [Abstract][Full Text] [Related]
12. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study. Fontenele RC; Gerhardt MDN; Pinto JC; Van Gerven A; Willems H; Jacobs R; Freitas DQ J Dent; 2022 Apr; 119():104069. PubMed ID: 35183696 [TBL] [Abstract][Full Text] [Related]
13. Subregional pharyngeal changes after orthognathic surgery in skeletal Class III patients analyzed by convolutional neural networks-based segmentation. Kim DY; Woo S; Roh JY; Choi JY; Kim KA; Cha JY; Kim N; Kim SJ J Dent; 2023 Aug; 135():104565. PubMed ID: 37308053 [TBL] [Abstract][Full Text] [Related]
14. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Minnema J; van Eijnatten M; Hendriksen AA; Liberton N; Pelt DM; Batenburg KJ; Forouzanfar T; Wolff J Med Phys; 2019 Nov; 46(11):5027-5035. PubMed ID: 31463937 [TBL] [Abstract][Full Text] [Related]
15. Association between the seasonal changes and mucous retention cyst of maxillary antrum in cone beam computed tomography images in a sample population of Isfahan, Iran. Jafari-Pozve N; Roshanzamir N Indian J Dent Res; 2018; 29(4):410-413. PubMed ID: 30127187 [TBL] [Abstract][Full Text] [Related]
16. Association between Odontogenic Conditions and Maxillary Sinus Disease: A Study Using Cone-beam Computed Tomography. Nascimento EH; Pontual ML; Pontual AA; Freitas DQ; Perez DE; Ramos-Perez FM J Endod; 2016 Oct; 42(10):1509-15. PubMed ID: 27522456 [TBL] [Abstract][Full Text] [Related]
17. Volumetric analysis of mucous retention cysts in the maxillary sinus: A retrospective study using cone-beam computed tomography. Hung K; Hui L; Yeung AWK; Wu Y; Hsung RT; Bornstein MM Imaging Sci Dent; 2021 Jun; 51(2):117-127. PubMed ID: 34235057 [TBL] [Abstract][Full Text] [Related]
18. A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Sin Ç; Akkaya N; Aksoy S; Orhan K; Öz U Orthod Craniofac Res; 2021 Dec; 24 Suppl 2():117-123. PubMed ID: 33619828 [TBL] [Abstract][Full Text] [Related]
19. Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network. Jung SK; Lim HK; Lee S; Cho Y; Song IS Diagnostics (Basel); 2021 Apr; 11(4):. PubMed ID: 33921353 [TBL] [Abstract][Full Text] [Related]
20. Enhanced artificial intelligence-based diagnosis using CBCT with internal denoising: Clinical validation for discrimination of fungal ball, sinusitis, and normal cases in the maxillary sinus. Kim K; Lim CY; Shin J; Chung MJ; Jung YG Comput Methods Programs Biomed; 2023 Oct; 240():107708. PubMed ID: 37473588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]