These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35032193)

  • 21. Leveraging Pretrained Transformers for Efficient Segmentation and Lesion Detection in Cone-Beam Computed Tomography Scans.
    Chen RQ; Lee Y; Yan H; Mupparapu M; Lure F; Li J; Setzer FC
    J Endod; 2024 Oct; 50(10):1505-1514.e1. PubMed ID: 39097163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in Maxillary Sinus Mucosal Thickening following the Extraction of Teeth with Advanced Periodontal Disease: A Retrospective Study Using Cone-Beam Computed Tomography.
    Cao Z; Yuan J
    Biomed Res Int; 2021; 2021():6688634. PubMed ID: 33860050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergence of artificial intelligence for automating cone-beam computed tomography-derived maxillary sinus imaging tasks. A systematic review.
    Shujaat S; Alfadley A; Morgan N; Jamleh A; Riaz M; Aboalela AA; Jacobs R
    Clin Implant Dent Relat Res; 2024 Oct; 26(5):899-912. PubMed ID: 38863306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study.
    Elgarba BM; Van Aelst S; Swaity A; Morgan N; Shujaat S; Jacobs R
    J Dent; 2023 Oct; 137():104639. PubMed ID: 37517787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study.
    Ayidh Alqahtani K; Jacobs R; Smolders A; Van Gerven A; Willems H; Shujaat S; Shaheen E
    Eur J Orthod; 2023 Mar; 45(2):169-174. PubMed ID: 36099419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visibility, location, and morphology of the primary maxillary sinus ostium and presence of accessory ostia: a retrospective analysis using cone beam computed tomography (CBCT).
    Yeung AWK; Colsoul N; Montalvao C; Hung K; Jacobs R; Bornstein MM
    Clin Oral Investig; 2019 Nov; 23(11):3977-3986. PubMed ID: 30737619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of 2D, 2.5D, and 3D segmentation networks for maxillary sinuses and lesions in CBCT images.
    Yoo YS; Kim D; Yang S; Kang SR; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ
    BMC Oral Health; 2023 Nov; 23(1):866. PubMed ID: 37964229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incidental maxillary sinus findings in orthodontic patients: a radiographic analysis using cone-beam computed tomography (CBCT).
    Pazera P; Bornstein MM; Pazera A; Sendi P; Katsaros C
    Orthod Craniofac Res; 2011 Feb; 14(1):17-24. PubMed ID: 21205165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study on the association between accessory maxillary ostium and maxillary sinus mucosal thickening using cone beam computed tomography.
    Shetty S; Al Bayatti SW; Al-Rawi NH; Samsudin R; Marei H; Shetty R; Abdelmagyd HA; Reddy S
    Head Face Med; 2021 Jul; 17(1):28. PubMed ID: 34261509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks.
    Gerhardt MDN; Fontenele RC; Leite AF; Lahoud P; Van Gerven A; Willems H; Smolders A; Beznik T; Jacobs R
    J Dent; 2022 Jul; 122():104139. PubMed ID: 35461974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic segmentation of the pharyngeal airway space with convolutional neural network.
    Shujaat S; Jazil O; Willems H; Van Gerven A; Shaheen E; Politis C; Jacobs R
    J Dent; 2021 Aug; 111():103705. PubMed ID: 34077802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prevalence of pathologic findings in the floor of the maxillary sinuses on cone beam computed tomography images.
    Da Silva AF; Fróes GR; Takeshita WM; Da Fonte JB; De Melo MF; Sousa Melo SL
    Gen Dent; 2017; 65(2):28-32. PubMed ID: 28253179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning.
    Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G
    J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiographic assessment of findings in the maxillary sinus using cone-beam computed tomography.
    Dobele I; Kise L; Apse P; Kragis G; Bigestans A
    Stomatologija; 2013; 15(4):119-22. PubMed ID: 24589634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implant-guided volumetric analysis of edentulous maxillary bone with cone-beam computerized tomography scan. Maxillary sinus pneumatization classification.
    Tolstunov L; Thai D; Arellano L
    J Oral Implantol; 2012 Aug; 38(4):377-90. PubMed ID: 22913308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information].
    Bo S; Gao C
    Beijing Da Xue Xue Bao Yi Xue Ban; 2024 Aug; 56(4):735-740. PubMed ID: 39041573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN.
    Li Q; Chen K; Han L; Zhuang Y; Li J; Lin J
    J Xray Sci Technol; 2020; 28(5):905-922. PubMed ID: 32986647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning-based automatic segmentation of bone graft material after maxillary sinus augmentation.
    Tao B; Xu J; Gao J; He S; Jiang S; Wang F; Chen X; Wu Y
    Clin Oral Implants Res; 2024 Aug; 35(8):964-972. PubMed ID: 38033189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association between odontogenic conditions and maxillary sinus mucosal thickening: a retrospective CBCT study.
    Aksoy U; Orhan K
    Clin Oral Investig; 2019 Jan; 23(1):123-131. PubMed ID: 29549441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT.
    Yeshua T; Ladyzhensky S; Abu-Nasser A; Abdalla-Aslan R; Boharon T; Itzhak-Pur A; Alexander A; Chaurasia A; Cohen A; Sosna J; Leichter I; Nadler C
    Eur Radiol; 2023 Nov; 33(11):7507-7518. PubMed ID: 37191921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.