BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35032334)

  • 1. CLAVATA modulates auxin homeostasis and transport to regulate stem cell identity and plant shape in a moss.
    Nemec-Venza Z; Madden C; Stewart A; Liu W; Novák O; Pěnčík A; Cuming AC; Kamisugi Y; Harrison CJ
    New Phytol; 2022 Apr; 234(1):149-163. PubMed ID: 35032334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokinin-CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants.
    Cammarata J; Morales Farfan C; Scanlon MJ; Roeder AHK
    Proc Natl Acad Sci U S A; 2022 Apr; 119(14):e2116860119. PubMed ID: 35344421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants.
    Whitewoods CD; Cammarata J; Nemec Venza Z; Sang S; Crook AD; Aoyama T; Wang XY; Waller M; Kamisugi Y; Cuming AC; Szövényi P; Nimchuk ZL; Roeder AHK; Scanlon MJ; Harrison CJ
    Curr Biol; 2018 Aug; 28(15):2365-2376.e5. PubMed ID: 30033333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control.
    Landberg K; Šimura J; Ljung K; Sundberg E; Thelander M
    New Phytol; 2021 Jan; 229(2):845-860. PubMed ID: 32901452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens.
    Cammarata J; Roeder AHK; Scanlon MJ
    J Exp Bot; 2023 Nov; 74(21):6541-6550. PubMed ID: 37498739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants.
    Thelander M; Landberg K; Muller A; Cloarec G; Cunniffe N; Huguet S; Soubigou-Taconnat L; Brunaud V; Coudert Y
    Curr Biol; 2022 Sep; 32(17):3838-3846.e5. PubMed ID: 35841890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RSL genes are sufficient for rhizoid system development in early diverging land plants.
    Jang G; Yi K; Pires ND; Menand B; Dolan L
    Development; 2011 Jun; 138(11):2273-81. PubMed ID: 21558375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes.
    Hata Y; Kyozuka J
    Plant Mol Biol; 2021 Nov; 107(4-5):213-225. PubMed ID: 33609252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter.
    Thelander M; Landberg K; Sundberg E
    New Phytol; 2019 Oct; 224(2):775-788. PubMed ID: 31318450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens.
    Aoyama T; Hiwatashi Y; Shigyo M; Kofuji R; Kubo M; Ito M; Hasebe M
    Development; 2012 Sep; 139(17):3120-9. PubMed ID: 22833122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane-targeted PIN proteins drive shoot development in a moss.
    Bennett TA; Liu MM; Aoyama T; Bierfreund NM; Braun M; Coudert Y; Dennis RJ; O'Connor D; Wang XY; White CD; Decker EL; Reski R; Harrison CJ
    Curr Biol; 2014 Dec; 24(23):2776-85. PubMed ID: 25448003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens.
    Jang G; Dolan L
    New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway.
    Prigge MJ; Lavy M; Ashton NW; Estelle M
    Curr Biol; 2010 Nov; 20(21):1907-12. PubMed ID: 20951049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PpGRAS12 acts as a positive regulator of meristem formation in Physcomitrium patens.
    Beheshti H; Strotbek C; Arif MA; Klingl A; Top O; Frank W
    Plant Mol Biol; 2021 Nov; 107(4-5):293-305. PubMed ID: 33598827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis.
    Ludwig-Müller J; Jülke S; Bierfreund NM; Decker EL; Reski R
    New Phytol; 2009 Jan; 181(2):323-338. PubMed ID: 19032442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions.
    Suzuki H; Kohchi T; Nishihama R
    Cold Spring Harb Perspect Biol; 2021 Mar; 13(3):. PubMed ID: 33431584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type.
    Mittag J; Šola I; Rusak G; Ludwig-Müller J
    J Plant Physiol; 2015 Jul; 183():75-83. PubMed ID: 26102574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components.
    Singh S; Singh A; Yadav S; Gautam V; Singh A; Sarkar AK
    Sci Rep; 2017 Feb; 7():42450. PubMed ID: 28195159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin-mediated developmental control in the moss Physcomitrella patens.
    Thelander M; Landberg K; Sundberg E
    J Exp Bot; 2018 Jan; 69(2):277-290. PubMed ID: 28992074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.