These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35032597)

  • 21. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures.
    Goto Y; Suga H
    Curr Opin Chem Biol; 2018 Oct; 46():82-90. PubMed ID: 29957445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links.
    Laws D; Plouch EV; Blakey SB
    J Nat Prod; 2022 Oct; 85(10):2519-2539. PubMed ID: 36136399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs.
    Pei ZF; Yang MJ; Zhang K; Jian XH; Tang GL
    Cell Chem Biol; 2022 Apr; 29(4):650-659.e5. PubMed ID: 34474009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The B1 Protein Guides the Biosynthesis of a Lasso Peptide.
    Zhu S; Fage CD; Hegemann JD; Mielcarek A; Yan D; Linne U; Marahiel MA
    Sci Rep; 2016 Oct; 6():35604. PubMed ID: 27752134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides.
    Duan Y; Niu W; Pang L; Bian X; Zhang Y; Zhong G
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting reactions of nonlinear precursor peptide processing of the class III lanthipeptide curvopeptin.
    Jungmann NA; Krawczyk B; Tietzmann M; Ensle P; Süssmuth RD
    J Am Chem Soc; 2014 Oct; 136(43):15222-8. PubMed ID: 25291240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu
    de Vries RH; Viel JH; Kuipers OP; Roelfes G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vivo Production of Diverse β-Amino Acid-Containing Proteins.
    Lakis E; Magyari S; Piel J
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202202695. PubMed ID: 35481938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo.
    Ozaki T; Yamashita K; Goto Y; Shimomura M; Hayashi S; Asamizu S; Sugai Y; Ikeda H; Suga H; Onaka H
    Nat Commun; 2017 Feb; 8():14207. PubMed ID: 28165449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase.
    Li G; Patel K; Zhang Y; Pugmire JK; Ding Y; Bruner SD
    Proteins; 2022 Mar; 90(3):670-679. PubMed ID: 34664307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics.
    Zheng Q; Fang H; Liu W
    Org Biomol Chem; 2017 Apr; 15(16):3376-3390. PubMed ID: 28358161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Major gene-regulatory mechanisms operating in ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthesis.
    Bartholomae M; Buivydas A; Viel JH; Montalbán-López M; Kuipers OP
    Mol Microbiol; 2017 Oct; 106(2):186-206. PubMed ID: 28787536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome mining for ribosomally synthesized natural products.
    Velásquez JE; van der Donk WA
    Curr Opin Chem Biol; 2011 Feb; 15(1):11-21. PubMed ID: 21095156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery and characterization of a novel C-terminal peptide carboxyl methyltransferase in a lassomycin-like lasso peptide biosynthetic pathway.
    Su Y; Han M; Meng X; Feng Y; Luo S; Yu C; Zheng G; Zhu S
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2649-2664. PubMed ID: 30707253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.