BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35032837)

  • 1. Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta.
    Peña JA; Cilla M; Martínez MA; Peña E
    J Biomech; 2022 Feb; 132():110909. PubMed ID: 35032837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the multilayer mechanical response of aorta using layer-specific residual stresses and experimental properties.
    Díaz C; Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2021 Jan; 113():104070. PubMed ID: 33007727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach.
    Peña JA; Martínez MA; Peña E
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1709-1730. PubMed ID: 31123879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tri-layered constitutive modelling unveils functional differences between the pig ascending and lower thoracic aorta.
    Giudici A; Spronck B; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2023 May; 141():105752. PubMed ID: 36893688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-layer model of coronary artery vasoactivity.
    Huo Y; Zhao X; Cheng Y; Lu X; Kassab GS
    J Appl Physiol (1985); 2013 May; 114(10):1451-9. PubMed ID: 23471951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Layer-specific hyperelastic and viscoelastic characterization of human descending thoracic aortas.
    Amabili M; Balasubramanian P; Bozzo I; Breslavsky ID; Ferrari G
    J Mech Behav Biomed Mater; 2019 Nov; 99():27-46. PubMed ID: 31330442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
    Holzapfel GA; Sommer G; Gasser CT; Regitnig P
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2048-58. PubMed ID: 16006541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic hyperelastic behavior of soft biological tissues.
    Chen ZW; Joli P; Feng ZQ
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1436-44. PubMed ID: 25127194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.
    Peña JA; Corral V; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2018 Jan; 77():434-445. PubMed ID: 29024895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling.
    Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA
    Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical characterization of a chronic type a dissected human aorta.
    Amabili M; Arena GO; Balasubramanian P; Breslavsky ID; Cartier R; Ferrari G; Holzapfel GA; Kassab A; Mongrain R
    J Biomech; 2020 Sep; 110():109978. PubMed ID: 32827785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic residual stresses in arteries.
    Sigaeva T; Sommer G; Holzapfel GA; Di Martino ES
    J R Soc Interface; 2019 Feb; 16(151):20190029. PubMed ID: 30958201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol.
    Jhun CS; Criscione JC
    Biomed Eng Online; 2008 Jan; 7():4. PubMed ID: 18211719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension.
    Lally C; Reid AJ; Prendergast PJ
    Ann Biomed Eng; 2004 Oct; 32(10):1355-64. PubMed ID: 15535054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is location a significant parameter in the layer dependent dissection properties of the aorta?
    Ríos-Ruiz I; Martínez MÁ; Peña E
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1887-1901. PubMed ID: 36057051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta.
    Myneni M; Sridhar RL; Rajagopal KR; Benjamin CC
    Ann Biomed Eng; 2022 Apr; 50(4):452-466. PubMed ID: 35226280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.