These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35032965)

  • 1. Revisiting the Roles of Natural Graphite in Ongoing Lithium-Ion Batteries.
    Zhao L; Ding B; Qin XY; Wang Z; Lv W; He YB; Yang QH; Kang F
    Adv Mater; 2022 May; 34(18):e2106704. PubMed ID: 35032965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Natural Microcrystalline Graphite Performances by a Dual Modification Strategy toward Practical Application of Lithium Ion Batteries.
    Peng J; Tan H; Wu Z; Tang Y; Liu P; He L; Yang J; Hu S; Wang S; Wang X
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59552-59560. PubMed ID: 38088861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-charging anodes for lithium ion batteries: progress and challenges.
    Ding X; Zhou Q; Li X; Xiong X
    Chem Commun (Camb); 2024 Feb; 60(18):2472-2488. PubMed ID: 38314874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries.
    Chae S; Choi SH; Kim N; Sung J; Cho J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):110-135. PubMed ID: 30887635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive review of various carbonaceous materials for anodes in lithium-ion batteries.
    Chen Z; Li Y; Wang L; Wang Y; Chai J; Du J; Li Q; Rui Y; Jiang L; Tang B
    Dalton Trans; 2024 Mar; 53(11):4900-4921. PubMed ID: 38321942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphite-like structured conductive polymer anodes for high-capacity lithium storage with optimized voltage platform.
    Mao P; Fan H; Zhou G; Arandiyan H; Liu C; Lan G; Wang Y; Zheng R; Wang Z; Bhargava SK; Sun H; Liu Y
    J Colloid Interface Sci; 2023 Mar; 634():63-73. PubMed ID: 36528972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the Surface of Natural Graphite with Functional Metal Oxides via Facile Crystallization for Lithium-Ion Batteries.
    Lee JW; Kim SY; Rhee DY; Park S; Jung JY; Park MS
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29797-29805. PubMed ID: 35737999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MXene as Promising Anode Material for High-Performance Lithium-Ion Batteries: A Comprehensive Review.
    Chy MNU; Rahman MA; Kim JH; Barua N; Dujana WA
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating Graphite Exfoliation with an Artificial Solid Electrolyte Interphase for Stable Lithium-Ion Batteries.
    Zhou J; Ma K; Lian X; Shi Q; Wang J; Chen Z; Guo L; Liu Y; Bachmatiuk A; Sun J; Yang R; Choi JH; Rümmeli MH
    Small; 2022 Apr; 18(15):e2107460. PubMed ID: 35224838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries.
    Wang M; Wang J; Xiao J; Ren N; Pan B; Chen CS; Chen CH
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16279-16288. PubMed ID: 35349272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanded graphite incorporated with Li
    Zhao J; Zhu X; Zhang W; Qiu J; Zhai F; Zhang H; Cao G; Gao S; Ding F; Xiang Y
    RSC Adv; 2024 Apr; 14(16):11276-11283. PubMed ID: 38595709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements and Prospects of Graphite Anode for Potassium-Ion Batteries.
    Yu J; Jiang M; Zhang W; Li G; Soomro RA; Sun N; Xu B
    Small Methods; 2023 Nov; 7(11):e2300708. PubMed ID: 37605458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and challenges in anode graphite recycling from spent lithium-ion batteries.
    Niu B; Xiao J; Xu Z
    J Hazard Mater; 2022 Oct; 439():129678. PubMed ID: 36104906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fast-charging properties of micro lithium-ion batteries for smart devices.
    Gao X; Zhou H; Li S; Chang S; Lai Y; Zhang Z
    J Colloid Interface Sci; 2022 Jun; 615():141-150. PubMed ID: 35124502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in silicon-carbon composites anodes derived from agro wastes for applications in lithium-ion battery: A review.
    Fafure AV; Bem DB; Kahuthu SW; Adediran AA; Bodunrin MO; Fabuyide AA; Ajanaku C
    Heliyon; 2024 Jun; 10(11):e31482. PubMed ID: 38845908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphite/Graphene Composites from the Recovered Spent Zn/Carbon Primary Cell for the High-Performance Anode of Lithium-Ion Batteries.
    Vadivel S; Tejangkura W; Sawangphruk M
    ACS Omega; 2020 Jun; 5(25):15240-15246. PubMed ID: 32637797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.