These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35032980)
1. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles. Ma Z; Ni R J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980 [TBL] [Abstract][Full Text] [Related]
2. Phase separation and state oscillation of active inertial particles. Dai C; Bruss IR; Glotzer SC Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833 [TBL] [Abstract][Full Text] [Related]
3. The interplay between chemo-phoretic interactions and crowding in active colloids. Fadda F; Matoz-Fernandez DA; van Roij R; Jabbari-Farouji S Soft Matter; 2023 Mar; 19(13):2297-2310. PubMed ID: 36857712 [TBL] [Abstract][Full Text] [Related]
4. Analytical approach to chiral active systems: Suppressed phase separation of interacting Brownian circle swimmers. Bickmann J; Bröker S; Jeggle J; Wittkowski R J Chem Phys; 2022 May; 156(19):194904. PubMed ID: 35597664 [TBL] [Abstract][Full Text] [Related]
5. Clustering and phase separation in mixtures of dipolar and active particles. Maloney RC; Liao GJ; Klapp SHL; Hall CK Soft Matter; 2020 Apr; 16(15):3779-3791. PubMed ID: 32239046 [TBL] [Abstract][Full Text] [Related]
7. Three-body correlations and conditional forces in suspensions of active hard disks. Härtel A; Richard D; Speck T Phys Rev E; 2018 Jan; 97(1-1):012606. PubMed ID: 29448434 [TBL] [Abstract][Full Text] [Related]
8. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System. Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654 [TBL] [Abstract][Full Text] [Related]
9. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features. Martin-Roca J; Martinez R; Alexander LC; Diez AL; Aarts DGAL; Alarcon F; Ramírez J; Valeriani C J Chem Phys; 2021 Apr; 154(16):164901. PubMed ID: 33940816 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119 [TBL] [Abstract][Full Text] [Related]
11. The coherent motions of thermal active Brownian particles. Yang C; Zeng Y; Xu S; Zhou X Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336 [TBL] [Abstract][Full Text] [Related]
12. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation. Omar AK; Klymko K; GrandPre T; Geissler PL Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789 [TBL] [Abstract][Full Text] [Related]
13. A particle-field approach bridges phase separation and collective motion in active matter. Großmann R; Aranson IS; Peruani F Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711 [TBL] [Abstract][Full Text] [Related]
14. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
15. Clustering and phase separation of circle swimmers dispersed in a monolayer. Liao GJ; Klapp SHL Soft Matter; 2018 Oct; 14(38):7873-7882. PubMed ID: 30221296 [TBL] [Abstract][Full Text] [Related]