BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

744 related articles for article (PubMed ID: 35033281)

  • 21. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paper-based assays for urine analysis.
    Lepowsky E; Ghaderinezhad F; Knowlton S; Tasoglu S
    Biomicrofluidics; 2017 Sep; 11(5):051501. PubMed ID: 29104709
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paper-based microfluidics for rapid diagnostics and drug delivery.
    Mao K; Min X; Zhang H; Zhang K; Cao H; Guo Y; Yang Z
    J Control Release; 2020 Jun; 322():187-199. PubMed ID: 32169536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical microfluidic paper-based analytical devices for cancer biomarker detection: From 2D to 3D sensing systems.
    Ebrahimi G; Pakchin PS; Mota A; Omidian H; Omidi Y
    Talanta; 2023 May; 257():124370. PubMed ID: 36858013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis.
    Zhang T; Ding F; Yang Y; Zhao G; Zhang C; Wang R; Huang X
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases.
    Ebrahimi G; Samadi Pakchin P; Shamloo A; Mota A; de la Guardia M; Omidian H; Omidi Y
    Mikrochim Acta; 2022 Jun; 189(7):252. PubMed ID: 35687204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges.
    Yang SM; Lv S; Zhang W; Cui Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Point-of-Care Diagnostics for Multi-Disease Detection Using Optical Techniques: A Review.
    Ahmadsaidulu S; Banik O; Kumar P; Kumar S; Banoth E
    IEEE Trans Nanobioscience; 2024 Jan; 23(1):140-147. PubMed ID: 37399163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory materials for microfluidic paper based analytical devices - A review.
    Selvakumar B; Kathiravan A
    Talanta; 2021 Dec; 235():122733. PubMed ID: 34517601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nano-functionalized paper-based IoT enabled devices for point-of-care testing: a review.
    Kishnani V; Park S; Nakate UT; Mondal K; Gupta A
    Biomed Microdevices; 2021 Nov; 24(1):2. PubMed ID: 34792679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design, fabrication and assembly of lab-on-a-chip and its uses.
    Pradeep A; Raveendran J; Babu TGS
    Prog Mol Biol Transl Sci; 2022; 187(1):121-162. PubMed ID: 35094773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis.
    Shukhratovich Abdullaev S; H Althomali R; Raza Khan A; Sanaan Jabbar H; Abosoda M; Ihsan A; Aggarwal S; Mustafa YF; Hammoud Khlewee I; Jabbar AM
    Talanta; 2024 Jun; 273():125896. PubMed ID: 38479027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in thread-based microfluidics for diagnostic applications.
    Weng X; Kang Y; Guo Q; Peng B; Jiang H
    Biosens Bioelectron; 2019 May; 132():171-185. PubMed ID: 30875629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. μPADs on Centrifugal Microfluidic Discs for Rapid Sample-to-Answer Salivary Diagnostics.
    Liu S; Hou Y; Li Z; Yang C; Liu G
    ACS Sens; 2023 Sep; 8(9):3520-3529. PubMed ID: 37669403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic-integrated DNA nanobiosensors.
    Ansari MIH; Hassan S; Qurashi A; Khanday FA
    Biosens Bioelectron; 2016 Nov; 85():247-260. PubMed ID: 27179566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paper based analytical devices for blood grouping: a comprehensive review.
    Ebrahimi Fana S; Paknejad M; Aminian M
    Biomed Microdevices; 2021 Jul; 23(3):34. PubMed ID: 34213635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.