These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 35033561)
21. Pyrrolysyl-tRNA Synthetase with a Unique Architecture Enhances the Availability of Lysine Derivatives in Synthetic Genetic Codes. Yamaguchi A; Iraha F; Ohtake K; Sakamoto K Molecules; 2018 Sep; 23(10):. PubMed ID: 30261594 [TBL] [Abstract][Full Text] [Related]
22. Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. Kavran JM; Gundllapalli S; O'Donoghue P; Englert M; Söll D; Steitz TA Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11268-73. PubMed ID: 17592110 [TBL] [Abstract][Full Text] [Related]
23. Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. Owens AE; Grasso KT; Ziegler CA; Fasan R Chembiochem; 2017 Jun; 18(12):1109-1116. PubMed ID: 28383180 [TBL] [Abstract][Full Text] [Related]
24. Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion. Hu L; Qin X; Huang Y; Cao W; Wang C; Wang Y; Ling X; Chen H; Wu D; Lin Y; Liu T ACS Synth Biol; 2020 Oct; 9(10):2723-2736. PubMed ID: 32931698 [TBL] [Abstract][Full Text] [Related]
25. Structural Basis for Genetic-Code Expansion with Bulky Lysine Derivatives by an Engineered Pyrrolysyl-tRNA Synthetase. Yanagisawa T; Kuratani M; Seki E; Hino N; Sakamoto K; Yokoyama S Cell Chem Biol; 2019 Jul; 26(7):936-949.e13. PubMed ID: 31031143 [TBL] [Abstract][Full Text] [Related]
26. The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity. Herring S; Ambrogelly A; Gundllapalli S; O'Donoghue P; Polycarpo CR; Söll D FEBS Lett; 2007 Jul; 581(17):3197-203. PubMed ID: 17582401 [TBL] [Abstract][Full Text] [Related]
27. Linker and N-Terminal Domain Engineering of Pyrrolysyl-tRNA Synthetase for Substrate Range Shifting and Activity Enhancement. Jiang HK; Lee MN; Tsou JC; Chang KW; Tseng HW; Chen KP; Li YK; Wang YS Front Bioeng Biotechnol; 2020; 8():235. PubMed ID: 32322577 [TBL] [Abstract][Full Text] [Related]
28. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues. Taylor CJ; Hardy FJ; Burke AJ; Bednar RM; Mehl RA; Green AP; Lovelock SL Protein Sci; 2023 May; 32(5):e4640. PubMed ID: 37051694 [TBL] [Abstract][Full Text] [Related]
29. A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. Vatansever EC; Yang KS; Geng ZZ; Qiao Y; Li P; Xu S; Liu WR J Mol Biol; 2022 Apr; 434(8):167534. PubMed ID: 35278475 [TBL] [Abstract][Full Text] [Related]
30. Orthogonal Protein Translation Using Pyrrolysyl-tRNA Synthetases for Single- and Multiple-Noncanonical Amino Acid Mutagenesis. Baumann T; Exner M; Budisa N Adv Biochem Eng Biotechnol; 2018; 162():1-19. PubMed ID: 27783132 [TBL] [Abstract][Full Text] [Related]
31. Directed Evolution of the Schwark DG; Schmitt MA; Fisk JD Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477414 [TBL] [Abstract][Full Text] [Related]
32. tRNA shape is an identity element for an archaeal pyrrolysyl-tRNA synthetase from the human gut. Krahn N; Zhang J; Melnikov SV; Tharp JM; Villa A; Patel A; Howard RJ; Gabir H; Patel TR; Stetefeld J; Puglisi J; Söll D Nucleic Acids Res; 2024 Jan; 52(2):513-524. PubMed ID: 38100361 [TBL] [Abstract][Full Text] [Related]
35. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells. Meineke B; Heimgärtner J; Eirich J; Landreh M; Elsässer SJ Cell Rep; 2020 Jun; 31(12):107811. PubMed ID: 32579937 [TBL] [Abstract][Full Text] [Related]
36. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. Pott M; Schmidt MJ; Summerer D ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570 [TBL] [Abstract][Full Text] [Related]