These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35033656)
1. Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Ling M; Wu Y; Tian R; Liu Y; Yu W; Tao G; Lv X; Li J; Du G; Amaro RL; Liu L Metab Eng; 2022 Mar; 70():55-66. PubMed ID: 35033656 [TBL] [Abstract][Full Text] [Related]
2. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814 [TBL] [Abstract][Full Text] [Related]
3. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis. Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807 [TBL] [Abstract][Full Text] [Related]
4. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Liu Y; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J Metab Eng; 2013 Sep; 19():107-15. PubMed ID: 23876412 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial metabolic engineering of Shi J; Deng C; Zhang C; Quan S; Fan L; Zhao L Synth Syst Biotechnol; 2024 Dec; 9(4):713-722. PubMed ID: 38868610 [TBL] [Abstract][Full Text] [Related]
6. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Liu Y; Zhu Y; Ma W; Shin HD; Li J; Liu L; Du G; Chen J Metab Eng; 2014 Jul; 24():61-9. PubMed ID: 24815549 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Ma W; Liu Y; Lv X; Li J; Du G; Liu L Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921 [TBL] [Abstract][Full Text] [Related]
8. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
9. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Niu T; Lv X; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L Biotechnol Bioeng; 2021 Jan; 118(1):383-396. PubMed ID: 32965679 [TBL] [Abstract][Full Text] [Related]
10. Green-Chemical Strategies for Production of Tailor-Made Chitooligosaccharides with Enhanced Biological Activities. Thomas R; Fukamizo T; Suginta W Molecules; 2023 Sep; 28(18):. PubMed ID: 37764367 [TBL] [Abstract][Full Text] [Related]
11. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
12. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048 [TBL] [Abstract][Full Text] [Related]
13. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate. Yang H; Liu Y; Li J; Liu L; Du G; Chen J Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Ling M; Liu Y; Li J; Shin HD; Chen J; Du G; Liu L Bioresour Technol; 2017 Dec; 245(Pt A):1093-1102. PubMed ID: 28946392 [TBL] [Abstract][Full Text] [Related]
15. Synergetic engineering of central carbon and nitrogen metabolism for the production of N-acetylglucosamine in Bacillus subtilis. Niu T; Lv X; Liu Z; Li J; Du G; Liu L Biotechnol Appl Biochem; 2020 Jan; 67(1):123-132. PubMed ID: 31654432 [TBL] [Abstract][Full Text] [Related]
16. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Kamst E; Bakkers J; Quaedvlieg NE; Pilling J; Kijne JW; Lugtenberg BJ; Spaink HP Biochemistry; 1999 Mar; 38(13):4045-52. PubMed ID: 10194317 [TBL] [Abstract][Full Text] [Related]
17. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic production of diverse N-acetyl chitooligosaccharides employing a novel bifunctional chitinase and its engineered variants. Liu Y; Sun G; Liu J; Lou Y; Zhu J; Wang C Food Chem; 2024 Sep; 453():139675. PubMed ID: 38781901 [TBL] [Abstract][Full Text] [Related]
19. Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B. Sun HZ; Li Q; Shang W; Qiao B; Xu QM; Cheng JS Metab Eng; 2024 May; 83():123-136. PubMed ID: 38582143 [TBL] [Abstract][Full Text] [Related]
20. A Recombinant Fungal Chitin Deacetylase Produces Fully Defined Chitosan Oligomers with Novel Patterns of Acetylation. Naqvi S; Cord-Landwehr S; Singh R; Bernard F; Kolkenbrock S; El Gueddari NE; Moerschbacher BM Appl Environ Microbiol; 2016 Nov; 82(22):6645-6655. PubMed ID: 27590819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]