These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35033705)

  • 1. Influence of citral on acrylamide formation in model systems.
    Zhu Y; Xu R; Luo Y; Sun G; Lin M; Hu X; Chen F
    Food Chem; 2022 Jun; 378():132097. PubMed ID: 35033705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration effect of galacturonic acid on acrylamide generation: evidence in model reaction systems.
    Wang P; Sun G; Lu P; Zhu Y; Hu X; Chen F
    J Sci Food Agric; 2023 Jan; 103(1):361-369. PubMed ID: 35893577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition Kinetics and Mechanism of Glutathione and Quercetin on Acrylamide in the Low-Moisture Maillard Systems.
    Nan X; Nan S; Zeng X; Kang L; Liu X; Dai Y
    J Food Prot; 2021 Jun; 84(6):984-990. PubMed ID: 33232484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigation effects of high methoxyl pectin on acrylamide formation in the Maillard model system.
    Wang P; Sun G; Lu P; Liu Y; Zhu Y; Chen F
    Food Chem; 2022 Jun; 378():132095. PubMed ID: 35042107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetics of the inhibition of acrylamide by glycine in potato model systems.
    Zhu Y; Wang P; Wang F; Zhao M; Hu X; Chen F
    J Sci Food Agric; 2016 Jan; 96(2):548-54. PubMed ID: 25656956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of galacturonic acid in acrylamide formation: Insights from structural analysis.
    Lin M; Sun G; Hu X; Chen F; Zhu Y
    Food Chem; 2024 Sep; 452():139282. PubMed ID: 38723562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2024 Apr; 72(13):7344-7353. PubMed ID: 38502793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glutathione on acrylamide inhibition: Transformation products and mechanism.
    Zhu Y; Luo Y; Sun G; Wang P; Hu X; Chen F
    Food Chem; 2020 Oct; 326():126982. PubMed ID: 32413762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine.
    Gökmen V; Kocadağlı T; Göncüoğlu N; Mogol BA
    Food Chem; 2012 May; 132(1):168-74. PubMed ID: 26434276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra high-performance liquid chromatography-tandem mass spectrometry for the simultaneous analysis of asparagine, sugars, and acrylamide in Maillard reactions.
    Zhang Y; Ren Y; Jiao J; Li D; Zhang Y
    Anal Chem; 2011 May; 83(9):3297-304. PubMed ID: 21462916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions.
    Qi Y; Zhang H; Zhang H; Wu G; Wang L; Qian H; Qi X
    J Agric Food Chem; 2018 Nov; 66(47):12536-12543. PubMed ID: 30396275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of methylglyoxal with acrylamide formation in fructose/asparagine Maillard reaction model system.
    Yuan Y; Zhao G; Chen F; Liu J; Wu J; Hu X
    Food Chem; 2008 Jun; 108(3):885-90. PubMed ID: 26065749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System.
    Zhu Y; An B; Luo Y; Hu X; Chen F
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The simultaneous inhibition of histidine on 5-hydroxymethylfurfural and acrylamide in model systems and cookies.
    Zhu Y; Luo Y; Sun G; Wang P; Hu X; Chen F
    Food Chem; 2022 Feb; 370():131271. PubMed ID: 34788952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans.
    Sung WC; Chang YW; Chou YH; Hsiao HI
    Food Chem; 2018 Mar; 243():141-144. PubMed ID: 29146320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of curcumin in the conversion of asparagine into acrylamide during heating.
    Hamzalıoğlu A; Mogol BA; Lumaga RB; Fogliano V; Gökmen V
    Amino Acids; 2013 Jun; 44(6):1419-26. PubMed ID: 22143430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylamide formation from asparagine under low moisture Maillard reaction conditions. 2. Crystalline vs amorphous model systems.
    Robert F; Vuataz G; Pollien P; Saucy F; Alonso MI; Bauwens I; Blank I
    J Agric Food Chem; 2005 Jun; 53(11):4628-32. PubMed ID: 15913336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system.
    Knol JJ; van Loon WA; Linssen JP; Ruck AL; van Boekel MA; Voragen AG
    J Agric Food Chem; 2005 Jul; 53(15):6133-9. PubMed ID: 16029007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of acrylamide formed in asparagine/D-glucose maillard model systems by using gas chromatography with headspace solid-phase microextraction.
    El-Ghorab AH; Fujioka K; Shibamoto T
    J AOAC Int; 2006; 89(1):149-53. PubMed ID: 16512240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acrylamide formation from asparagine under low-moisture Maillard reaction conditions. 1. Physical and chemical aspects in crystalline model systems.
    Robert F; Vuataz G; Pollien P; Saucy F; Alonso MI; Bauwens I; Blank I
    J Agric Food Chem; 2004 Nov; 52(22):6837-42. PubMed ID: 15506824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.